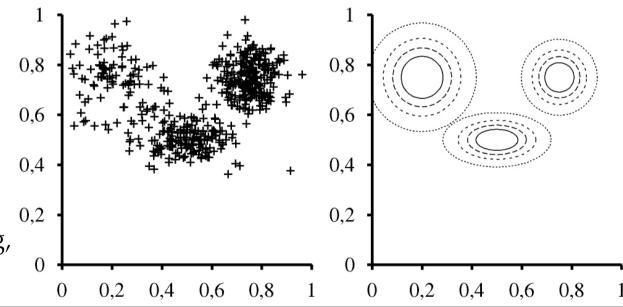
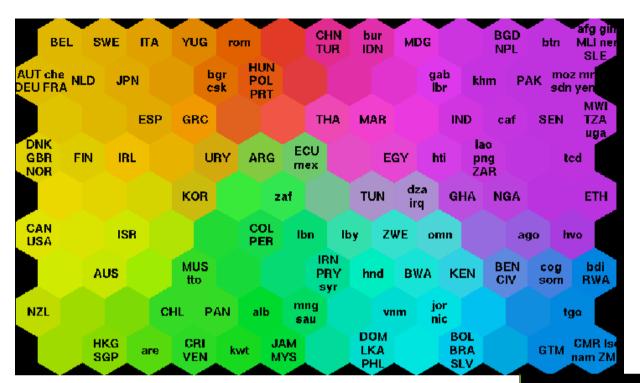
2. Induktives Logisches Programmieren

Unüberwachtes Lernen

- Keine ausdrücklichen Lernbeispiele
- Zum Lernen verwende die Information, die "von allein" da ist: Merkmalsvektoren von Objekten; Logikformeln; ...
- Ziel ist die automatische Strukturierung:
 Cluster bzgl. Merkmalen; Definitionen bzgl. Prädikaten; ...



Ergebnis von unüberwachtem Clustering, Russell/Norvig Fig. 20.8

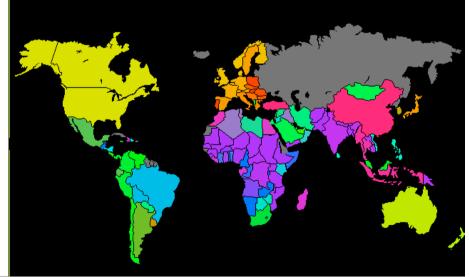


Beispiel für Clustering: Kohonen-Karten

Übertragung auf geographische Verteilung

- 39 Faktoren für Lebensstandard (Weltbank, 1992: Einkommen, Infrastruktur, Gesundheit, ...)
- gewichte Faktoren;
 Abbildung in 2-dim. Cluster;
 Nachbarschaft in Farbcodierung

http://www.cis.hut.fi/research/som-research/worldmap.html



Lernen in Logik

Beispiel: Aus Lernbeispielen (und evtl. Weiterem) erzeuge z.B.

```
\forall r. \ Warten(r) \Leftrightarrow G\"{a}ste(r,Einige)
\lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Franz\"{o}sisch)]
\lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Thai) \land Frei/Sams(r)]
\lor [G\"{a}ste(r,Voll) \land Hungrig(r) \land Typ(r,Burger)]
... und bevorzuge "einfache" Formeln (Ockham's Razor)!
```

Vorteile

- Überwachtes Lernen (wie mit DTL) ist echte Untermenge davon
- Lerne beliebige Prädikate/Relationen (nicht nur 1-stellige Attribute)
- Kann Regeln induzieren ohne explizite Lernbeispiele
- Beziehe "Hintergrundwissen" ein bzw. baue es aus

(Potenzieller) Nachteil

Größere Ausdrucksfähigkeit macht Lernen komplexer

Erscheinungsformen Logikbasierten Lernens

- Erklärungsbasiertes Lernen (EBL): Deduziere Klassifikation der Lernbeispiele als Instanzen allgemeiner Prinzipien (Lernen spezifischer "Abkürzungen" von Deduktion)
- Relevanzbasiertes Lernen (RBL): Deduziere klassifikationsrelevante Information, dann Hypothesen
- Wissensbasiertes induktives Lernen (KBIL): $Background \land Hypothese \land Lernbeispiele \models Klassifikation$
 - Hypothese ist zu finden → induktives Lernverfahren
 - Hypoth. muss konsistent sein mit *Background \Lernbeispiele*

Hier: Induktives Logisches Programmieren (ILP)

Intuition: Der Versionenraum

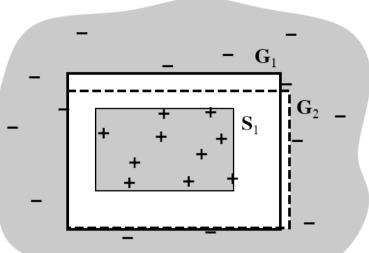
Gegeben: log. Theorie (Formelmenge) T, sodass T = P(a,b) und $T = \neg P(b,b)$, und - keine weitere Folgerbarkeit bzgl. P. Also:

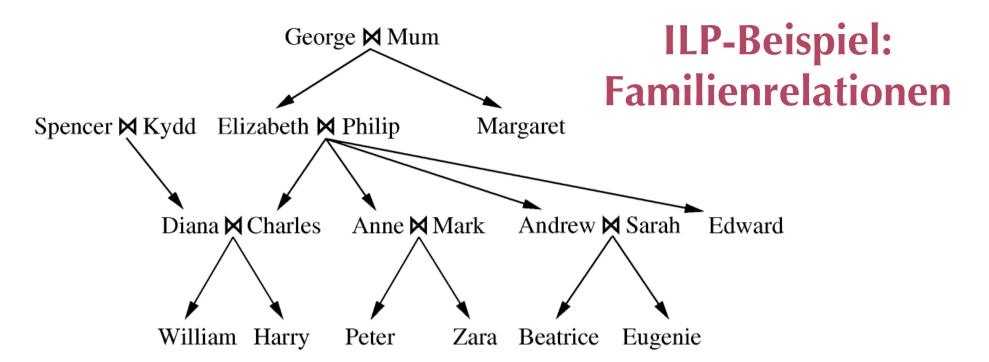
- für (*a*,*b*) ist *P* wahr,
- für (*b*,*b*) ist *P* falsch,
- für (a,a), (b,a) ist P ungewiss (kann wahr oder auch falsch sein)

Soll die **Extension** (Menge der erfüllenden Argument-Paare) von *P* präzise charakterisiert werden, ist

- $\{(a,b)\}$ oder $\{(b,b)\}$ zu **generalisieren** (Beispiele hinzu)
- Gegenrichtung: Spezialisieren (falsch Klassifizierte weg)

In Logik verändert man die Extension eines Prädikats durch Hinzufügen von Formeln zur Theorie zu T





Gegeben:

- Vollständige Repräsentation des Stammbaums mittels Prädikaten Vater, Mutter, Paar, Mann, Frau
- einige der 20x20 Instanzen
 (pos., neg.) des Prädikats *Opa(x,y)*

Gesucht:

- z.B. Definition von Opa(x,y) in Termini der anderen Prädikate
- Form der Def.: Disjunktion von Hornklauseln

Beispiel: Opadefinitionskandidaten

Gegeben: $Opa(George, Anne), Opa(Philip, Peter), Opa(Spencer, Harry), <math display="block">\neg Opa(Anne, Anne), \neg Opa(Harry, Zarah), \neg Opa(Charles, Philip)$

Kandidaten für Definitionen ("PROLOG-artige" Notation, aber "⇒")

- $\bullet \Rightarrow Opa(x,y).$
 - Falsch für alle Gegenbeispiele → spezialisieren (durch "Raten")! Zufällige Kandidaten:
 - $Vater(x,y) \Rightarrow Opa(x,y)$. (Falsch für alle Beispiele)
 - $Paar(x,z) \Rightarrow Opa(x,y)$. (Falsch für einige Gegenbeispiele)
 - $Vater(x,z) \Rightarrow Opa(x,y)$. (Falsch für mehr Gegenbeispiele)
 - ... wähle #2 zum Spezialisieren etc.

... bis Klauseln gefunden, die alle Positiv-, keine Negativbeispiele implizieren → deren Disjunktion ist die Definition!

FOIL (First Order Inductive Learner)

```
function Foil(examples, target) returns a set of Horn clauses
  inputs: examples, set of examples
       target, a literal for the goal predicate
  local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
       clause ← New-Clause(examples, target)
      remove examples covered by clause from examples
      add clause to clauses
  return clauses
```

- Potenziell jede Klausel der Sprache für NEW-CLAUSE möglich
- Heuristiken/Bedingungen zu Klauseln: Variablen, Länge, ...
- Mehr bei Russell/Norvig, Kap. 19.5

Inverse Resolution

- Der Suchraum beim "Klauselraten" à la FOIL ist riesig
- Wenn das Gelernte die Form

Background \land Hypothese \land Lernbeispiele \models Klassifikation haben soll, muss

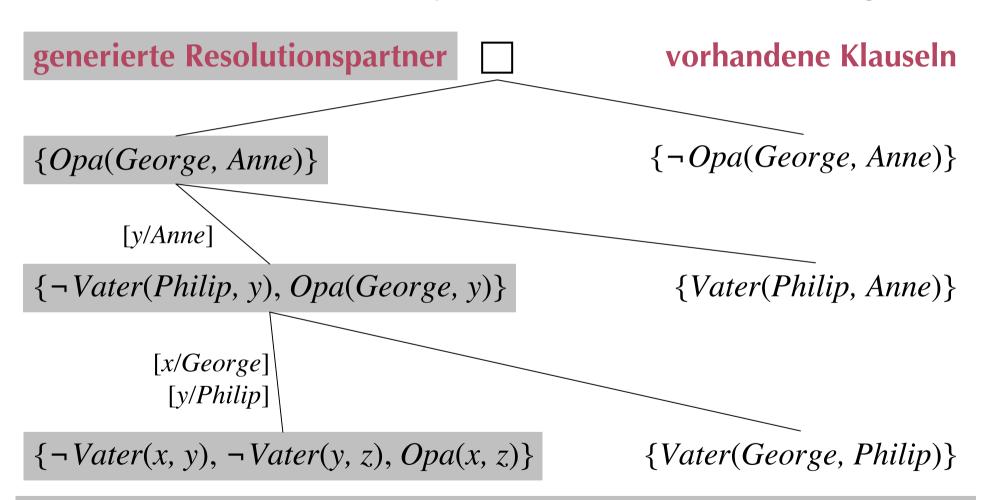
Background \land Hypothese \land Lernbeispiele \land ¬Klassifikation durch Resolution widerlegbar sein

 Könnte man dann nicht statt Klauselraten gezielt solche Klauseln als Hypothese suchen, die für die Widerlegung von Background \(\Lernbeispiele \) \(\Sigmu Klassifikation \)
fehlen?

→ Inverse Resolution

Beispiel für Inverse Resolution

Wir wollen das Positivbeispiel *Opa(George, Anne)* widerlegen



ILP und die Praxis

- Um Klauselraten/FOIL oder Inverse Resolution praxistauglich zu machen, gibt es viel an Theorie und Heuristiken
- Es ist sogar möglich, *neue*, Sinn tragende Prädikate zu "entdecken", welche die Klauselmenge "kompakter" machen
- Mehr bei Russell/Norvig, Kap. 19.5
- ILP-Systeme werden praktisch beim data mining eingesetzt

... helping you transform data into knowledge

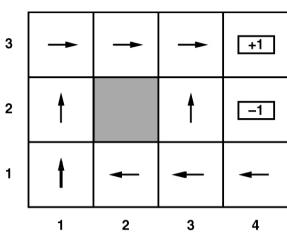
Logo der Firma von Ross Quinlan, Entwickler von FOIL

Reinforcement-Lernen (RL)

- Ziel: Lerne auf Grund von Reward/Reinforcement-Signalen aus der Umgebung optimales Handeln in sequenziellen Entscheidungsproblemen
- Ähnlich zu PO/MDPs in Kapitel 5.3 (viele Gleichungen von dort gelten auch hier), **aber**:
 - keine Kenntnis des Transitionsmodells T
 - keine Kenntnis der Reward-Funktion R
 - während beim Entscheiden unter Unsicherheit eine optimale Entscheidung (MDP-Plan) "objektiv gegeben" ist (man muss sie nur ausrechnen) ...
 - ... muss nun zunächst/implizit das Umgebungsmodell "erlernt" werden

Erster Schritt: Passives RL

- **Gegeben**: MDP mit einem MDP-Plan $\pi(s)$
- Finde/lerne: Nutzenfunktion $U^{\pi}(s)$
- "Passiv", weil Aktionen aus $\pi(s)$ einfach nur ausgeführt werden



Beispiel wie in Kap.5.3

Was wir haben:

- Die Def. der Nutzenfunktion $U^{\pi}(s) \coloneqq E \left| \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| \pi, s_{0} = s \right|$ (wie Kap. 5.3. Folie 385) (wie Kap. 5.3, Folie 385)
- Beobachtete Aktions/Zustands/Reward-Sequenzen, z.B.

$$\bullet (1,1)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (2,3)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (4,3)_{+1}$$

$$\bullet$$
 (1,1)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (2,3)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (3,2)_{-.04} \rightarrow (3,3) \rightarrow (4,3)₊₁

•
$$(1,1)_{-.04}$$
 \rightarrow $(2,1)_{-.04}$ \rightarrow $(3,1)_{-.04}$ \rightarrow $(3,2)_{-.04}$ \rightarrow $(4,2)_{-1}$

Update-Regel für die Nutzenfunktion

- Die einzig vorhandene Information kommt aus der Beobachtung von Aktionssequenzen und Rewards
- Gegeben hinreichend viele Aktionssequenzen, ergibt sich der Nutzen eines Zustands aus dessen Reward und anteilig den Nutzen der Nachfolgezustände

Die *Temporal Difference* (TD) Update-Regel

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

- γ Abschlags-Faktor (wie in Kap. 5.3)
- α Lernrate: Wie unmittelbar soll eine bei einer Aktionssequenz festgestellte Nutzen-Differenz im Update berücksichtigt werden? (α kann von der Frequenz der Zustandsbesuche abhängen)

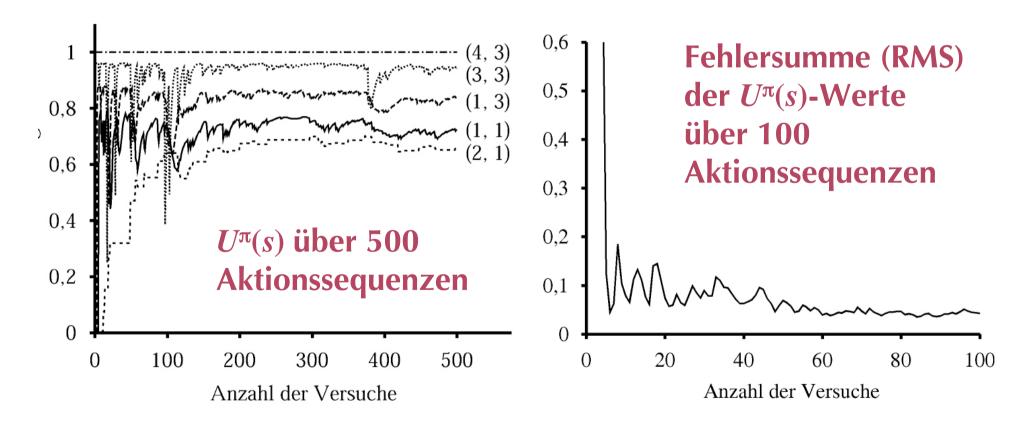
TD braucht kein explizites Modell der Umgebung (T,R)!

TD-Lernen

```
function PASSIVE-TD-AGENT(percept) returns an action inputs: percept, a percept indicating the current state s' and reward signal r' static: \pi, a fixed policy U, a table of utilities, initially empty N_s, a table of frequencies for states, initially zero s, a, r, the previous state, action, and reward, initially null if s' is new then U[s'] \leftarrow r' if s is not null then do increment N_s[s] U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s]) if TERMINAL?[s'] then s, a, r \leftarrow null else s, a, r \leftarrow s', \pi[s'], r' return a
```


Ergebnisse

Satz: Gemittelt über Aktionssequenzen konvergiert $U^{\pi}(s)$ gegen den korrekten Wert (s. Folie 432)



Zweiter Schritt: Aktives RL

- Gegeben: ein "unbekanntes" MDP
- Finde/lerne: für jeden Zustand s die optimale Aktion a
- "Aktiv", weil MDP-Plan nicht vorgegeben ist, sondern gefunden werden muss

Was wir haben:

- Bellmann-Gleichungen $U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s')$ (wie Kap. 5.3, Folie 386) als Beschreibung eines "Fixpunkts" von U, R, T
- ... wobei wir weder *U* noch *R* noch *T* kennen!
- Beobachtete Aktions/Zustands/Reward-Sequenzen, wie eben

Wissen ausbauen oder ausbeuten?

... Englisch: exploration vs. exploitation

- "Mittendrin" im Lernen haben wir approximative Nutzenwerte, Aktionsmodelle
- Sollen wir dann "gut" handeln, müssten wir *immer* die *dann* optimale Aktion wählen gemäß dem, was wir dann wissen ("Ausbeuten" des aktuell Gelernten)
- Gäbe es eine bessere Aktion, finden wir sie nie
- Um das zu tun, müssen wir "manchmal" gegen das aktuell bekannte Optimum agieren, um möglicherweise Besseres zu finden ("Ausbauen" des aktuell Gelernten)

Explorationsfunktion

$$f(u,n) = \begin{cases} R^+ \text{ falls } n < N \\ u \text{ sonst} \end{cases}$$

- u Nutzenwert
- *n* Häufigkeit, wie oft Zustand besucht wurde
- N feste Schranke
- *R*⁺ feste Schätzung eines max. Rewards

Die Q-Funktion

- Ziel ist, modellfrei optimale Aktionen für Zustände zu lernen (nicht mehr eine Nutzenfunktion für gegebenes π)
- Ersetze Nutzen eines Zustands U(s) durch Nutzen einer Aktion im Zustand: Q(a,s), wobei $U(s) = \max_{a} Q(a,s)$
- entsprechend Bellmann-Gleichung in Q (formuliert nach wie vor Fixpunkt der Funktionswerte): $Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(a',s')$
- Q-Version der TD-Update-Regel

$$Q(a,s) \leftarrow Q(a,s) + \alpha \left(R(s) + \gamma \max_{a'} Q(a',s') - Q(a,s) \right)$$

(α kann von der Frequenz der Zustandsbesuche abhängen)

Q-Lernen

```
function Q-Learning-Agent(percept) returns an action inputs: percept, a percept indicating the current state s' and reward signal r' static: Q, a table of action values index by state and action N_{sa}, a table of frequencies for state-action pairs s, a, r, the previous state, action, and reward, initially null if s is not null then do increment N_{sa}[s,a] Q[a,s] \leftarrow Q[a,s] + \alpha(N_{sa}[s,a])(r+\gamma \max_{a'} Q[a',s']-Q[a,s]) if TERMINAL?[s'] then s, a, r \leftarrow null else s, a, r \leftarrow s', argmax_{a'} f(Q[a',s'], N_{sa}[a',s']), r' return a
```

Vorausgesetzt geeignete Parameter der *f*-Funktion, approximiert die Funktion die Aktion eines optimalen MDP-Plans

Weiterführendes zum RL

- Will man modellfrei sein, oder will man eigentlich (auch) das Umgebungsmodell haben?
- Wie integriert man Vorwissen über optimales/gutes Handeln?
- Wie kommt man zurecht mit Veränderung in der Umgebung?
 Muss man
 - erst alles Gelernte "abtrainieren" und dann das Neue lernen
 - oder kann man Teile des früher Gelernten übernehmen?

Gliederung

- 1. KI im Allgemeinen und in dieser Vorlesung
- 2. Heuristische Suche
- 3. Logik und Inferenz
- 4. Wissensrepräsentation
- 5. Handlungsplanung
- 6. Lernen
- 7. Sprach er beitung
- 8. Umgebungswahrnehmung

Rückblick

Die KI ist der Teil der Informatik, der mittels algorithmischer Modelle Leistungen des Denkens, Tuns und Wahrnehmens untersucht.

Ausblick

- Bei der AG Wissensbasierte Systeme (Hertzberg)
 - Blockpraktikum "Mobile Robotik", ab 14.2.2005
 - V+Ü Wissensbasierte Robotik, SS2005
 - Praktikum RoboCup Rescue, SS2005
 - Seminar Planungssysteme, SS2005
 - AG Wissensbasierte Robotik, Graduiertenseminar
- Veranstaltungen der AG Neuroinformatik (Riedmiller)
- Veranstaltungen im Studiengang Cognitive Science

• ...

