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Abstract

This work presents the concept to recover and uti-
lize the visual context in panoramic images. Omnidi-
rectional imaging has become recently an efficient basis
for robot navigation. The proposed Bayesian reason-
ing over local image appearances enables to reject false
hypotheses which do not fit the structural constraints
in corresponding feature trajectories. The methodology
is proved with real image data from an office robot to
dramatically increase the localization performance in
the presence of severe occlusion effects, particularly in
noisy environments, and to recover rotational informa-
tion on the fly.

1 Introduction

Navigation is a fundamental task for autonomous
mobile robots [9]. Particularly, it relies on robust lo-
calization methods, e.g. in the presence of occlusion
and under noisy and uncertain environment conditions.
The interpretation of a single sensor pattern always de-
pends on the ambiguity of a specific view, the impreci-
sion of the environment model, and the uncertainty in
the image formation [4, 19]. Instead of generating arbi-
trarily complex classifiers to solve an a priori ill-posed
problem, one may analyze the context within the sen-
sor pattern which provides much more efficient cues for
localization.

Localization methods are discriminated as geomet-
ric or topological. Geometric approaches require a com-
parison between the local geometry model extrac- ted
from the sensor information with the predetermined
model of the entire environment. Typical geometry
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models are occupancy grids for sonar or laser based lo-
calization [15, 21], and models based on local features
for visually guided navigation [2]. These models ei-
ther lack complexity of information or are difficult to
be built. In a topological approach, maps are repre-
sented by adjacency graphs, with nodes denoting loca-
tions and arcs representing transitions between them
[22, 23]. Memory-based methods [6, 1, 7, 12, 13] for
localization are biologically inspired and do not need
an explicit model of the world, but rather match the
sensory input with the stored information in memory.

Omnidirectional imaging has become recently an ef-
ficient basis for robot navigation [1, 7, 22, 23, 8]. The
sensor characteristics enable to provide information not
only about a restricted field of view ahead but rather to
integrate multi-directional appearances where nearby
positions are strongly correlated [12, 8]. Recent ad-
vances in robust omnidirectional navigation have been
achieved towards illumination invariance [23] and rea-
sonable occlusion tolerance [8], respectively.

The original contribution of this work is to take ad-
vantage of the local context in omnidirectional sens-
ing, by reasoning on the structure of ordered ’uni-
directional’ views in the panoramic image. One may
understand panoramic images at certain environment
positions in analogy to multi-view captures in object
recognition. The proposed method for robot localiza-
tion thus corresponds to the interpretation of prob-
abilistic dependencies between local structures in 2D
[20] and multiple views of 3D [19] objects, respectively.
The probabilistic framework enables to take advantage
of even partial evidence about a position and to reject
false hypotheses which do not fit the structural con-
straints. These characteristics render it fairly insensi-
tive to severe occlusion and noise in the visual input.
Furthermore, as a consequence of the multi-view repre-
sentation, the robot’s orientation is implicitly recovered
by localization.



Figure 1. Robot kurt-2 equipped with omnidirec-
tional camera on top.

Each panoramic image is first partitioned into a
fixed number of overlapping uni-directional camera
views, i.e., appearance sectors. Distributions of sec-
tor images in eigenspace [16, 1] are then represented
by mixture of Gaussians [3] to provide a posterior dis-
tribution over potential locations. The ambiguity in a
local sector interpretation as well as occlusion defects
are then resolved by Bayesian reasoning over the spatial
context of the current position. Probabilistic naviga-
tion modules for localization in small environments are
being considered integrated within a global topological
navigation concept.

2 Localization by panoramic
eigenimages

Complex environments are favourably modelled by
topological representations, with nodes representing lo-
cations and arcs denoting adjacency of locations. Fig. 2
illustrates a topological map of a small test environ-
ment used in the experiments. Within each map mod-
ule, locations are directly learned from images captured
at robot runs. Image based navigation derives a sen-
sor based model of the environment [6, 12], without
the load of additional preprocessing and interpreta-
tion. Eigenspace analysis of the reference image mem-
ory [16, 11] enables significant reduction of the stor-
age requirements and to focus on statistically relevant
features. Panoramic eigenimages [1] result then from
principal component analysis on omnidirectional sensor
images.

Figure 2. Topological map of the office environment
(left) and grid for position measurements (right) in
the corresponding navigation modules env1-env3.

The eigenspace of an image training set X = {x1,
. . . ,xN} of size N is a low-dimensional representation
of the original image space. It captures the maximum
variations in the presented data set whereas distances
are a measure of image correlation [16]. Recognition is
supported by the property that close points in subspace
correspond to similar appearances. The eigenspace is
spanned by a selection of the ε most prominent eigen-
vectors ei of the covariance matrix on XXT . The pro-
jection of image x into the eigenspace of dimension ε
is y(x) = (e1, . . . , eε)Tx. For localization, samples x
are mapped into eigenspace to y(x), and assigned the
label of the closest position representative yr.

The robustness in navigation has been extended
dealing with illumination variance [23] and occlusion
patterns [8], however, the occlusions as in Fig. 9 had
not been treated before.

Furthermore, rotational information had either to
be incorporated in the representation or to be recov-
ered in the localization process. Local context in the
omnidirectional image enables to recover in parallel the
rotational and the positional information.

3 Extraction of local appearance
sectors

The original contribution of this work is to exploit
the spatial relation between uni-directional views in
panoramic images. Due to its wide visual field, oc-
clusion of the entire panoramic view becomes very un-
likely. Finding evidence for a position from subwin-
dows of the original image, then reasoning over the



Figure 3. The presented local window approach con-
tinually splits the panoramic image (bottom) into
overlapping appearance sectors (top).

local decisions, is the method followed in the sequel.

The panoramic image is first partitioned into a fixed
number of overlapping uni-directional camera views
(Fig. 3), i.e., local appearance sectors s at φ(xi) =
{si,1, . . . , si,Σ}, for a partition into j = 1..Σ sector
parametrizations κj , starting at field angle 360◦/Σ
and with predefined width. Eigenspace analysis is
then performed on the set of sectors from images cap-
tured at all N individual camera positions, i.e., on
X′ = {s1,1, . . . , sN,Σ}. To each position φi, i = 1..Φ,
corresponds a parametric set of points in eigenspace
which can be interpolated to a closed curve. Curves
of neighboring positions in the environment may over-
lap due to the similar appearance of their respective
sector projections (Fig. 4). Since appearance sectors
convey less information than the global image itself,
one expects a higher degree of ambiguity in this repre-
sentation, but a higher robustness to occlusion, too.

4 Probabilistic localization under
Bayesian context

In uncertain and noisy environments, localization
on the basis of a crisp mapping from observations y
to positions φi becomes unreliable, and soft comput-
ing methods are required to quantify the ambiguity
by means of beliefs for multiple position hypotheses
[7, 21, 10].

In analogy, [14] introduced probabilistic object re-
cognition from single 2D views represented in eigen-
space. [21, 7, 10, 17] applied probabilistic localization
to robot navigation problems, [5] outlined local appear-
ance recognition of navigation landmarks.

(a)

(b)

Figure 4. Feature trajectory of sector projections
from images x1, x2 (Fig. 3) of nearby positions φ1

and φ2, illustrating the ambiguity in their appear-
ance and feature trajectory in eigenspace, respec-
tively.

4.1 Bayesian interpretation

Given the measurement about position φi and ap-
pearance sector κj , the likelihood of obtaining feature
vector y is denoted by p(y|φi, κj). The likelihood is es-
timated from a set of sample images with fixed φi and
κj , capturing the inaccuracies such as moderate light
or positioning variations. From the learned likelihoods
one obtains then via Bayesian inversion

P (φi, κj |y) = p(y|φi, κj)P (κj |φi)P (φi)/p(y), (1)

and a posterior estimate with respect to the position
hypotheses φi is given by P (φi|y) =

∑
j P (φi, κj |y).

In practice, the likelihoods are estimated only at se-
lected values of κ, e.g. at most informative or periodic
settings κj ≡ k×∆κ [4, 18]. The posterior estimates for
intermediate values κ are determined using a Gaussian
mixture model [3], P (φi, κj |y) ≈

∑
g P (g) λµg,σg (y),

where P (g) are the mixing coefficients and λµg,σg (y)
are Gaussians described by parameters µg, σg which
can be adjusted in a training session.



4.2 Bayesian decision fusion process

Multiple measurements enable to resolve ambigui-
ties in the initial interpretation. In a most general
framework on belief integration, the discrimination sta-
tus is iteratively updated with newly upcoming evi-
dence, fusing the posterior beliefs in the position hy-
potheses P (φi|y) obtained from each single sector mea-
surement s with new evidence [4, 18, 19].

Spatial context in the combination of sector evi-
dences corresponds in general to the impact of shift
actions a ≡ ∆κ (Fig. 9) on the sector feature trajectory
in eigenspace (Fig. 4). Introducing the representation
of actions into Bayesian decision fusion [19] leads to

P (φi, κj |y1, a,y2) = (2)
αP (φi, κj |y1, a)p(y2|φi, κj ,y1, a),

where α = 1/p(y2|y1, a) is the normalizing factor. Spa-
tial context is now exploited using the conditional term
P (φi, κj |y1, a): The probability for observing appear-
ance sector (φi, κj) as a consequence of deterministic
action a = ∆κ must be identical to the probability of
having measured at the action’s starting point before,
i.e. at appearance sector view (φi, κj −∆κ), thus

P (φi, κj |y1, a) ≡ P (φi, κj −∆κ|y1). (3)

Furthermore, the probability density of y2, given the
knowledge of view (φi, κj), is conditionally indepen-
dent of previous observations and actions, and there-
fore p(y2|φi, κj ,y1, a) = p(y2|φi, κj). The recursive
update rule for M conditionally dependent observations
accordingly becomes

P (φi, κj |y1, a1, . . . , aM−1,yM ) = (4)
αp(yM |φi, κj)P (φi, κj −∆κM−1|y1, a1, . . . ,yM−1),

and the posterior distribution on position hypotheses,
using Ya

T ≡ {y1, a1, . . . , aM−1,yM}, is then given by

P (φi|Ya
M ) =

∑
j

P (φi, κj |Ya
M ). (5)

In practice, occlusions may induce ambiguity in sin-
gle appearance sectors, but they barely represent sec-
tor trajectories comparable with the training struc-
tures. Analogously, localization at inter-grid points and
direction measurements can be resolved by extracting
structural constraints from fusion steps.

Once the appearance sector P (φi, κj) is recovered
from the positional measurement, the rotation ∆κ be-
tween a stored training image xs and a test sample xt is
easily determined by comparing the location of sector

κj,s within xs with the corresponding sector κj,t within
xt.

The computational complexity for a single updating
step depends crucially on the sector representation of
the panoramic image. For Σ sectors, Σ(Σ−1)/2 sector
combinations are computed (each with ΣΦ probability
updates) to result in O(ΦΣ3), which enables real-time
processing (section 5).

5 Experiments

The experiments were conducted in the hallway of
the GMD-AiS department (Fig. 2) with a Neuronics
omnidirectional camera installed on top of the robot
platform kurt-2 (Fig. 1). Images were captured from a
grid of sensing points each 50 cm apart, and assigned
to the corresponding topological structure depicted in
Fig. 2. Note that the robot was aligned to only one
direction, since rotational information is implicitly en-
coded within the sequence of sectors.

The images of size 360× 200 were split into 36 sec-
tors of size 20×200, each covering 20◦ of the panoramic
field of view, and each within a translational shift of
10◦ (Fig. 3). The images were normalized to ‖ x ‖= 1,
to account for illumination variations - according to
[16]. Principal component analysis was then applied to
images of a corresponding topological module (env1-
3) to determine the most prominent eigenvectors (Sec-
tion 2), and each sector image was projected to the
10-dimensional eigenspace.

To test the navigation system, the training images
(Fig 5) were occluded by images of an artifical image
database (Fig. 6). The impact of occlusion effects was
gradually controlled by the percentage of image content
covered by artificial images (e.g., Fig. 9).

The likelihood p(y|φi, κj) (Eq. 4) of a test sector
sample y, given field view (φi, κj), was modelled as-
suming Gaussian distributed error, with mean µφi,κj
and variance σ2

φi,κj
indicating the sector specific sample

distribution. This distribution can also be estimated
from illumination or positioning variances actually ex-
perienced at view (φi, κj) [18, 19].

Occlusion tolerance A first experiment compares
the navigation performance of the traditional ’global
window’ approach - classifying the panoramic image -
with the one obtained using ’local window’ data - clas-
sifying the sector image. Both representations were
evaluated by a nearest neighbor (NN) classifier, i.e.,
test samples yt were assigned the label of the training
representative ys which is closest in eigenspace. Fig. 7
depicts the results w.r.t. recognition accuracy and var-
ious degrees of occlusion. While the performance of



(a)

(b)
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Figure 5. Panoramic training images of the GMD-
AiS department, particularly from env1 (a), env2
(b), and env3 (c).

Figure 6. Images from the artificial image database
to model occlusion effects.

the ’global window’ approach vigorously decreases with
slight occlusion effects, the recognition of single sectors
remains optimal until 70 % occlusion. Thereafter, per-
formance decreases (with some perturbation due to the
test set configuration) since every sector is affected by
severe occlusion.

Robustness against noise The second experiment
evaluates the robustness of the interpretation against
Gaussian noise in the visual input. A probabilistic
interpretation of single sectors (section 4.1) is com-
pared with the localization using Bayesian context
(section 4.2) between 2 sectors (Fig. 8). With in-
creasing ratio σ2

n/σ
2
l , where σ2

n denotes the noise and
σ2
l the learned variance respectively, the advantage of

the structural evaluation within the context based ap-
proach (’2-sector classification’) strictly outperforms a
single sector evaluation. ’1-sector classification’ sub-
stantially represents a NN classifier which fails with
increasing noise.

Implicit rotational information With the deci-
sion for a most likely sector in the training image set,
one is able to recover the rotation of the robot w.r.t.
the training image. Fig. 9 depicts the test image of
70% occlusion (top) and the recovered training image
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Figure 7. Comparison of occlusion sensitivity be-
tween the global and the local window approach.

(bottom). The Bayesian context classifier determined
sectors κ1 and κ2 as most discriminating sectors, which
enables - under knowledge of the corresponding sectors
(κ′1,κ′2) in the train image - to recover the rotation ∆κ
between these images.

The local sector navigation system enables real-time
localization. The Bayesian update procedure for Σ =
36 sectors and Φ = 41 positions required ΦΣ2(Σ −
1)/2 ≈ 9.3 × 105 computations, which represented a
tractable load for a 300 Mhz PC.

6 Conclusions

Spatial context is an important cue for robot lo-
calization which is naturally derived from a sequence
of appearance sectors in the panoramic image. The
Bayesian framework for the decision fusion process en-
ables to quantify the uncertainty in the discrimination
of each position.

The results from navigation experiments using the
office robot demonstrate that the Bayesian reasoning
allows highly occlusion and noise tolerant localization,
vigorously improving the navigation performances in
comparison to previous approaches.

The localization system is considered to enable ac-
curate visual navigation of autonomous robots even at
crowded places such as offices, factories, and urban en-
vironments. The detection of the occluding image re-
gions may then provide a starting point to apply object
recognition for further interpretation.
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Figure 8. Comparison of noise tolerance between a
1-sector probabilistic interpretation and a 2-sector
approach utilizing Bayesian context.

Figure 9. Test image at position φ2 with 70% occlu-
sion (top) and recovered train image (bottom) plus
corresponding rotation component ∆κ.
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