Some Details

Joachim Hertzberg

Osnabrück University and DFKI Robotics Innovation Center

(Own) Material

- H. Surmann, A. Nüchter, J. Hertzberg. An Autonomous Mobile Robot with a 3D Laser Range Finder for 3D Exploration and Digitalization of Indoor Environments. J. Robotics and Autonomous Systems 45:181-198, 2003
- A. Nüchter, J. Hertzberg. Towards Semantic Maps for Mobile Robots.
 J. Robotics and Autonomous Systems 56(11):915-926, 2008
- M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg. Building Semantic Object Maps from Sparse and Noisy 3D Data. Proc. IROS-2013, pp. 2228-2233
- M. Günther, T. Wiemann, S. Albrecht, J. Hertzberg. Model-Based Furniture Recognition for Building Semantic Object Maps J. Artificial Intelligence, forthcoming

Semantic Map

A semantic map for a mobile robot is a map that contains, in addition to spatial information about the environment, assignments of mapped features to entities of known classes. Further knowledge about these entities, independent of the map contents, is available for reasoning in some knowledge base with an associated reasoning engine.

A semantic (spatial) map exists only in relation to a KB!

There is More to Semantic Mapping than Labeling Objects in a Given Map!

- Reasoning in the domain theory allows hypotheses to be generated
- Hypotheses may need to be checked
- The area (space and the objects in it) get actively explored
- Exploration means "going there", but possibly exploring (manipulating, inspecting, ...) objects, too

Overview

- 1. Pose Planning in Autonomous (Semantic) Mapping
- 2. Some More on CAD Model Matching
- 3. Open Issues

Overview

- 1. Pose Planning in Autonomous (Semantic) Mapping
- 2. Some More on CAD Model Matching
- 3. Open Issues

3D SLAM with 6D Poses

What's Missing for <u>Autonomous</u> SLAM?

- Online registration of 3D Scans
 - (some) literature, including (quite some) own
- Online pose correction according registration transformation
 - (some) literature, including (quite some) own
- Online loop detection
 - literature, including (some) own
- Online planning of next pose/path to optimize mapping
 - only very little literature
 - including (some) own and today's paper
 - criteria:
 - fill up geometry map
 - verify object hypotheses
 - ... and many more

All in Integration in a(nother) Castle

3D-SPLAM (2/5)

Sort and complete lines

Polar angels α_i of the line ends induce unique order. Connect neighboring scan lines by added **artificial** ones \rightarrow Slice Polygon

3D-SPLAM (3/5)

Draw scan position candidates

Uniformly distributes *Random Sampling* in slice polygon, fixed number of test positions

The slice polygon ...

- ... borders the area mapped until now
- ... touches un-mapped area with its artificial lines
- ... is not necessarily free of "gaps" and "holes"

Cousins from Computational Geometry I

Art Gallery Problem

Where put *N* guards, so that they can see all points of the inside area of a polygon (without holes)?

Theorem For Polygon of *P* vertices ex. solution for $N=\lfloor P/3 \rfloor$

Is it simple to find <u>good</u> solutions?

Theorem

UNIVERSITÄT

The Art Gallery Problem is NP-hard

But we want only 1 robot!

Cousins from Computational Geometry II

Watchman Problem

Find a (minimal) path for <u>one</u> watchman, that allows him to oversee the inside area of the polygon completely!

Theorem

The Watchman Problem is NP-hard

(because the Art Gallery Problem is)

But we watch in static poses only! ...and we do not have the map!

OSNABRÜCK

UNIVERSITÄT

The Problem of Optimal Exploration

What is, dependent on start information and real environment geometry, a drivable (kinematic, collision), expectedly shortest path between scan poses, at the end of which the polygon's inside area is completely mapped?

More Reasons for a Robot for Particular Target Points

- Self organization
 - e.g., "Go to charging station!"
- Pose disambiguation
 - e.g., if entropy in probabilistic localization too high ("Go to landmark!")
 - or planned right away as intermediate targets to avoid losing the pose estimation in the first place ("coastal navigation")
- "Transit poses"
 - e.g. door passing: Pass through pose on the door normal to avoid crossing through the door in an angle
- Poses to manipulate individual objects
 - e.g. clear table: Drive to pose allowing to reach as many clearable items as possible

Overview

- 1. Pose Planning in Autonomous (Semantic) Mapping
- 2. Some More on CAD Model Matching
- 3. Open Issues

Reminder: Architecture Context

Practical Issues in 3D Semantic Mapping

- Practically, Semantic Mapping is based on single scans/ frames, rather than fully registered scene models
- In particular RGB-D cameras have small opening angle: only partial object views per frame, blurred by sensor noise
- Surfaces in real-world scenes are frequently cluttered
- Shiny and transparent objects exist
- A great many object models are available for matching
- Care about robustness
 - against occlusion
 - of CAD matching

Robustness Against Occlusion

- When does object detection break in face of clutter?
- When does plane detection break?
- Table experiment

Point Cloud, Mesh and Segmentation

Result in Summary

	0 obj.	2 obj.	3 obj.	4 obj.	5 obj.	6 obj.	7 obj.	12 obj.
Region Growing	$1.50 \\ 93\%$	$1.47 \\ 92\%$	$1.47 \\ 92\%$	$1.40 \\ 87\%$	$1.35 \\ 84\%$	$1.26 \\ 79\%$	$1.17 \\ 73\%$	$0.95 \\ 59\%$
Contour Triangulation	$1.50 \\ 93\%$	$1.50 \\ 93\%$	$1.49 \\ 93\%$	$1.52 \\ 95\%$	$1.52 \\ 95\%$	$1.52 \\ 95\%$	$1.50 \\ 93\%$	$1.20 \\ 75\%$

- Table top area in m² and as percentage of ground truth
- Region growing starts breaking for moderate clutter
- Contour triangulation stabilizes matters, unless the contour is occluded, too
- Need help, e.g., of texture

Robustness of CAD Object Matching

Chairs are different

CAD models of different chair types applied for matching against sensed chairs

Sensed chairs even more

Chair model registered from 3 Kinect frames

Best Matches depend on ...

- ... good pose guess and good type guess
- A best match does always exist!

OSNABRÜCK

UNIVERSITÄT

Some Details

Quantitative Results

	final pose error									
	pose	e 1	pose	e 2	pose 3					
	$e_{\text{translation}}$	$e_{\rm rotation}$	$e_{\text{translation}}$	e_{rotation}	$e_{\text{translation}}$	e_{rotation}				
chair 1	$0.5\mathrm{cm}$	0.47°	$0.5\mathrm{cm}$	0.48°	$0.5\mathrm{cm}$	0.0°				
chair 2	$0.0\mathrm{cm}$	0.1°	$0.1\mathrm{cm}$	0.11°	$0.0\mathrm{cm}$	0.0°				
chair 3	$0.0\mathrm{cm}$	0.04°	$0.0\mathrm{cm}$	0.04°	$0.0\mathrm{cm}$	0.01°				
chair 4	$0.1\mathrm{cm}$	0.04°	$0.1\mathrm{cm}$	0.05°	$1.9\mathrm{cm}$	34.07°				
chair 5 †	$3.1\mathrm{cm}$	12.22°	$2.2\mathrm{cm}$	22.55°	$3.0\mathrm{cm}$	12.77°				
chair 6	$29.5\mathrm{cm}$	3.56°	$11.1\mathrm{cm}$	42.81°	$10.9\mathrm{cm}$	42.85°				

- Insignificant differences among "plausible" chair models
- Stool and wingchair stick out
- **†** Stool is largely rotation symmetric, don't regard rotation error!

Overview

- 1. Pose Planning in Autonomous (Semantic) Mapping
- 2. Some More on CAD Model Matching
- 3. Open Issues

Open Issues/Work in Progress

- Care about transparent and shiny objects
- Find criteria for "good enough" match
- Really do multi-modal semantic mapping
- Really do active semantic mapping (to resolve ambiguity, move sensors & manipulate environment)
- Use GIS technology for storing semantic maps (spacerelated part) compactly and help optimize (some) queries
 - "Give me the list of green tables with at least 1 muffin on"

Thank you for your time!

