Integrating Probabilistic Belief Revision and Planning for Mobile Robot Control

Max Mustermann

August 5, 2010

Table of Contents

- 1 Introduction
 - Autonomous Mobile Robots
 - Hybrid control architecture
 - Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- **5** Application Scenario

Autonomous Mobile Robots Hybrid control architecture Planning

Outline

- 1 Introduction
 - Autonomous Mobile Robots
 - Hybrid control architecture
 - Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- 5 Application Scenario

Autonomous Mobile Robots Hybrid control architecture Planning

Autonomous Mobile Robots

KURT robots:

- 3D laser scanner
- cameras

Autonomous Mobile Robots Hybrid control architecture Planning

Autonomous Mobile Robots

KURT robots:

- 3D laser scanner
- cameras

current PhD projects:

- mapping and integration of symbolic data
- calculating polygon maps from point clouds
- object recognition, building semantic maps
- planning based on semantic maps

some nice picture

Autonomous Mobile Robots Hybrid control architecture Planning

Hybrid control architecture

- reactive layer
 - object recognition
 - following a path
 - navigating to a waypoint
 - grasping an object
 -

Autonomous Mobile Robots Hybrid control architecture Planning

Hybrid control architecture

- reactive layer
 - object recognition
 - following a path
 - navigating to a waypoint
 - grasping an object
 -
- higher-level planning layer
 - sequence of high-level actions to perform a task
 - e.g., "open fridge; grasp bottle of beer; close fridge; go to living room; deliver beer to user"

Autonomous Mobile Robots Hybrid control architecture Planning

Planning

Separate research area: action planning

- solving abstract planning problems
- large improvement over recent years
- many good planners readily available

Autonomous Mobile Robots Hybrid control architecture Planning

Dissertation project

Goal of dissertation project

Using a general-purpose planner for mobile robot control, based on sensor data from 3D laser scanners and cameras

Autonomous Mobile Robots Hybrid control architecture Planning

Dissertation project

Goal of dissertation project

Using a general-purpose planner for mobile robot control, based on sensor data from 3D laser scanners and cameras

Problems:

- incomplete and noisy sensor information
- changes in a dynamic environment
- ightarrow inconsistencies in the global world model

Autonomous Mobile Robots Hybrid control architecture Planning

Proposed Solution

- 1 general-purpose planner (HTN planner)
 - accepts a consistent planning task
 - returns a sequence of actions

Autonomous Mobile Robots Hybrid control architecture Planning

Proposed Solution

- 1 general-purpose planner (HTN planner)
 - accepts a consistent planning task
 - returns a sequence of actions
- 2 ontology in Description Logic (OWL-DL)
 - captures background knowledge about the world
 - detects inconsistencies

Autonomous Mobile Robots Hybrid control architecture Planning

Proposed Solution

- 1 general-purpose planner (HTN planner)
 - accepts a consistent planning task
 - returns a sequence of actions
- 2 ontology in Description Logic (OWL-DL)
 - captures background knowledge about the world
 - detects inconsistencies
- 3 probabilistic belief revision model
 - keeps track of evidence for facts
 - decides on the most probable consistent world model

Outline

- 1 Introduction
 - Autonomous Mobile Robots
 - Hybrid control architecture
 - Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- 5 Application Scenario

Physical Blocks World ("Copy Demo", 1970)

another nice example picture

Planning Domain Description (STRIPS)

goal specification

 $Goal(On(A, B) \wedge On(B, C))$

action specification

Action(PutOn(x, y),

Precond: $On(x, z) \wedge Clear(x) \wedge Clear(y)$

 $\land \ x \neq z \land x \neq y \land y \neq z$

Effect: $On(x, y) \land \neg On(x, z) \land Clear(z) \land \neg Clear(y)$)

HTN Planning

Hierarchical Task Networks

- provide knowledge about the hierarchical structure of the planning domain
- dependency among actions can be given in the form of networks
- 3 different types of tasks:
 - primitive tasks (≈ STRIPS actions)
 - compound tasks (composed of simpler tasks)
 - goal tasks (≈ STRIPS goals, but more general)

Problems with real Sensor Data

Planners need a complete & consistent world model, but...

- 1 sensors are not perfect
 - incomplete information: $On(C, A) \wedge OnTable(B)$
 - inconsistent information: $On(C, A) \wedge On(A, C)$
- 2 the world changes dynamically
 - how to integrate new information?

Introduction Planning

Outline

UNIVERSITÄT

1 Introduction

OSNABRÜCK

- Autonomous Mobile Robots
- Hybrid control architecture
- Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- 5 Application Scenario

Description Logic

- family of knowledge representation languages
- used to represent terminological knowledge
- middle ground solution: more expressive than propositional logic, decidable or more efficient decision problems than predicate logic
- used in the semantic web (OWL-DL)
- many efficient reasoners are available

Using DLs for Planning

- create an ontology to encode constraints of the domain
- use a DL reasoner to detect inconsistencies

Problem

But: How to decide between multiple consistent worlds?

Outline

- 1 Introduction
 - Autonomous Mobile Robots
 - Hybrid control architecture
 - Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- 5 Application Scenario

Logical Belief Revision

- AGM postulates (Alchurrón, Gärdenfors & Makinson, 1985)
- how to integrate new and old facts in a consistent manner
- not directly applicable here, because accuracy information from the sensors is ignored

Probabilistic Belief Revision

- two main methods: Bayesian belief networks (Pearl, 1988) and probability kinematics (Jeffrey, 1965)
- beliefs as a probability distribution
- can be used to decide between different consistent world models based on, e.g.,
 - estimated accuracy of the object classification
 - source of information (user-given information, sensor data, ...)
 - amount of time since a particular piece of information was sensed

Outline

- 1 Introduction
 - Autonomous Mobile Robots
 - Hybrid control architecture
 - Planning
- 2 Planning
- 3 Description Logic
- 4 Belief Revision
- 5 Application Scenario

Application Scenario

- office floor (rooms + corridor) with obstacles (tables, chairs)
- objects of interest: traffic cones, wooden cubes, ...
- tasks: bringing objects to target locations, generate target aggregates
- exogenous events (opening/closing doors, moving/adding/ removing objects)

Questions?

Thank you for your attention!
Any questions?

Proofs, Definitions and Friends

Proof.	
Proof	
Definition	
Definition	
Lemma	
Lemma	
Theorem	
Theorem	

