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Abstract

This paper presents an approach to creating a semantic map of an indoor
environment incrementally and in closed loop, based on a series of 3D point
clouds captured by a mobile robot using an RGB-D camera. Based on a se-
mantic model about furniture objects (represented in an OWL-DL ontology
with rules attached), we generate hypotheses for locations and 6DoF poses of
object instances and verify them by matching a geometric model of the ob-
ject (given as a CAD model) into the point cloud. The result, in addition to
the registered point cloud, is a consistent mesh representation of the environ-
ment, further enriched by object models corresponding to the detected pieces
of furniture. We demonstrate the robustness of our approach against occlu-
sion and aperture limitations of the RGB-D frames, and against differences
between the CAD models and the real objects. We evaluate the complete
system on two challenging datasets featuring partial visibility and totaling
over 800 frames. The results show complementary strengths and weaknesses
of processing each frame directly vs. processing the fully registered scene,
which accord with intuitive expectations.

Keywords: Semantic map, incremental mapping, closed-loop mapping,
model-based object recognition, 3D point cloud, CAD model matching,

*corresponding author
Email addresses: martin.guenther@uni-osnabrueck.de (Martin Giinther),
thomas.wiemannQuni-osnabrueck.de (Thomas Wiemann),
sven.albrecht@uni-osnabrueck.de (Sven Albrecht),
joachim.hertzberg@uni-osnabrueck.de (Joachim Hertzberg)

Preprint submitted to Artificial Intelligence July 7, 2015



OWL-DL ontology

1. Introduction

1.1. Closed-loop Incremental Semantic Mapping

Building 3D maps of indoor environments by mobile robots has received
increasing interest since the launch of inexpensive 3D sensors such as the
Microsoft Kinect. Several successful approaches exist that generate 3D point
cloud maps (e.g., [1, 2]) or mesh representations (e.g., [3]) based on RGB-D
data. Yet, automatically providing additional semantic information to the
maps, such as location and type of furniture present, is still not well un-
derstood. Information on a semantic level, however, is necessary for many
advanced tasks of an autonomous robot, such as object search or place recog-
nition. Also, it has advantages for the map building process itself: If the class
and location of objects in the map are known, object models could be used
to hypothesize missing sensor data, or loop-closing in mapping can be based
on semantic as well as geometric information.

A semantic map is necessarily hybrid in the classical sense of Kuipers
[4], including at least geometric information and semantic knowledge [5]. In-
tuitively, the process of generating a semantic map (semantic mapping, for
short) should be closed-loop and incremental. Closed-loop means that ob-
ject recognition and labeling in the sensor data (“bottom-up”) should not
strictly precede processing on the semantic level, but that knowledge and
reasoning on the semantic level should be able to influence object classifi-
cation, recognition and the mapping process as a whole (“top-down”). For
example, the information that some room is an office room should lead rea-
soning on the semantic level to hypothesize that certain types of objects are
likely or unlikely to be present, respectively; such hypotheses then bias or
guide bottom-up sensor data processing. Incremental means that the se-
mantic map building process does not have to wait for the sensor data of
some scene or environment to be complete (no matter how such complete-
ness would have to be defined and determined), but has to start right away,
based on individual sensor takes, such as single RGB-D frames or 3D laser
scans. This expectation fits with the closed-loop property, as the increase
of environment knowledge in the semantic map over the mapping process
is supported by both sensor data and prior knowledge, e.g., about object
classes and their relations. Incrementality poses a challenge, though, as such



individual sensor takes suffer greatly from occlusions and limitations due to
sensor aperture or view pose constraints — in addition to the unavoidable
regular sensor noise.

Closed-loop, incremental semantic mapping is currently not well under-
stood. There is quite some body of literature about its ingredients, as will be
discussed in the Related Work section; however, there are only few systems
doing it in integration. This paper contributes a detailed case study of such
a system. It presents an approach to semantic mapping that:

1. reconstructs the surfaces from noisy 3D data, captured from a Kinect
camera, and creates a triangle mesh;

2. recognizes furniture objects in the point clouds based on structural
descriptions from an OWL-DL ontology;

3. and finally adjusts their poses using ICP, and augments the created
map with CAD models corresponding to the furniture objects.

We call model-based object recognition the ensemble of these three steps, used
in integration with a knowledge base (given in OWL-DL, in this case) and a
module for building geometric 3D point cloud maps. Using state of the art
SLAM algorithms, these annotated point clouds can then be used to maintain
a consistent semantic map of the complete environment, consisting of both
the geometry and the semantic knowledge.

We would like to emphasize the role that using a formally well-understood
knowledge representation and reasoning (KR&R) formalism plays in closed-
loop, incremental semantic mapping, rather than using some ad-hoc set of
object labels. Using arbitrary labels like “table”, “tasse”, or “ql7”, which
may or may not have a meaning for humans, may suffice for purely bottom-up
recognition, classification, or labeling of segments of sensor data. Whenever
the intention is to reason with and about objects or events perceived by the
robot, though, using some KR&R formalism with a well-defined semantics
and, ideally, efficient reasoners available is the obvious choice. Such reasoning
is needed for the top-down part of closed-loop semantic mapping in the first
place; it may be employed in other robot tasks using the previously acquired
semantic map, such as object search (e.g., [6, 7]), human robot interaction
on a high conceptual level [8], detecting norm violations [9].

Many researchers in semantic mapping have recently been using descrip-
tion logics (DL, [10]) as such a formalism, in particular the DL variants
OWL-DL and OWL-lite, as available in the OWL W3C standard [11]; we
are using OWL-DL in the work reported here, too. DL is an obvious choice

4



for a KR&R formalism in semantic mapping, as it allows to represent and
reason about object ontologies, providing a structured representation of ob-
ject classes and instances, but of some relations between objects, too, which
the declarative part of a semantic map is expected to contain. Existing DL
reasoners provide reasoning services such as consistency checking and sub-
sumption within an ontology for free and in a highly optimized way. They
allow sound inferences to be made across all hierarchical levels of the ontol-
ogy without further effort. For example, questions like “How many pieces
of furniture does room R contain?”, or “Which pieces of furniture on this
floor are suitable storage places for a milk jug?” could be answered right
away, based on perceptions of individual chairs, tables, shelves and so on. As
many representation and reasoning problems in robotics naturally include
uncertainty, such as by sensor noise and/or interpretation uncertainties, sev-
eral researchers have recently embedded the ontological reasoning provided
by DL reasoners into probabilistic frameworks like Markov Logic Networks
[12, 13] or Bayesian Logic Networks [14]. The bottom line here is:

1. Using a well-founded KR&R formalism for representing and reason-
ing in the semantic part of a semantic map is strongly advised, if not
needed, in semantic mapping; previous Al work in KR&R has yielded
a wide variety of such formalisms that are ready to be used.

2. Variants of DL have been used in much of the recent semantic mapping
research, and we have done so in the work reported here.

“Pure” DL is certainly not the final word regarding a suitable KR&R formal-
ism, as it cannot well handle uncertainty and n-ary relations, just to mention
two points. Identifying or developing more fitting formalisms is an impor-
tant issue for interdisciplinary research between Al and Robotics, which we
recommend to put on the common agenda, but do not intend to detail in
this paper.

1.2. Contribution of this Paper

The approach detailed in this paper combines a number of techniques that
make it suitable for being used in on-line, incremental semantic mapping,
starting from a stream of RGB-D frames: meshing of 3D points and refer-
ring to geometric features are used to compensate sensor noise and aperture
limitations, and early closed-loop usage of the semantic knowledge is used
to generate object hypotheses for guiding low-level sensor data processing.



The techniques are equally applicable to registered sets of RGB-D frames
covering large areas and, hence, larger objects not captured in single frames.

In previous publications, we have presented partial results of this case
study using 3D laser scanner data [15] and single RGB-D frames [16]. This
paper presents an extended version of these conference publications. Addi-
tionally, we include new comprehensive results about what effect the degree of
similarity between CAD model and actual object has on the quality of the fi-
nal pose estimation, and we apply the method to a full scene point cloud using
a 6D SLAM algorithm. The system implementing the method is evaluated
on two different datasets consisting of a total of 810 point clouds containing
six different classes of furniture. The complete data sets are available at
http://kos.informatik.uni-osnabrueck.de/furniture_recognition/.

The paper next discusses related work, which is substantial in particular
with respect to the individual parts of robotic mapping and object recogni-
tion. We then describe model-based object recognition in detail. After that,
evaluation results are presented and discussed. To conclude, we sketch future
work motivated by the findings of this case study.

2. Related Work

In the field of semantic mapping, several authors have proposed algo-
rithms that label point clouds with semantic information. For instance, Rusu
et al. [17] detect several types of furniture and approximate them as cuboids.
Niichter and Hertzberg [5] classify coarse structures (walls, floors, doors) us-
ing a semantic network and detect smaller objects using a trained classifier.
Mason and Marthi [18] autonomously build a semantic object map over a long
time span, focusing on small and medium-sized objects instead of furniture.
Pangercic et al. [19] build a semantic map based on the detection of furniture
parts in a set of 3D point clouds. Similar to our approach, they employ a
description logic ontology as part of their system; however, their approach is
strictly bottom-up (recognized objects are fed into the ontological knowledge
base), whereas our approach uses semantic knowledge inside the recognition
loop. Neumann and Méller [20] investigate the use of description logics for
high-level scene interpretation tasks; they do not explicitly refer to seman-
tic mapping, but their abductive approach to object and object aggregate
perception is clearly suitable for the task.

CAD models have been used for object recognition before. For mass-
produced objects, ranging from furniture over household appliances to table-



ware, CAD models exist and are widely available — either as the exact model
directly from the manufacturer or as a similar model via sources like the
Google 3D Warehouse. The first approaches in this direction started in the
mid-nineties using vision based sensors [21] or a combination of a laser pro-
jector, a stereo camera and several additional cameras [22]. These approaches
have in common that they try to recognize objects at a known position, i.e.,
the object in question is already centered in the obtained sensor data and no
additional objects or occlusions are present in the sensor data. A more recent
approach on a larger scale is presented by Bosché [23], where several matched
3D laser scans of a construction site are compared to a model in order to
track progress and detect divergences between model and actual construc-
tion site. A prerequisite for this work is a correct model in advance, i.e., it is
known what the sensors are supposed to measure and subsequently a quan-
titative analysis concerning the differences between expected measurements
and received measurements is performed. In contrast to these approaches we
neither demand a complete model of the perceived scene nor do we require
the exact poses of candidates for object recognition in advance, but employ
general domain knowledge to generate object hypotheses and use CAD mod-
els to refine these. From this characterization, our approach is similar to the
work of Klank et al. [24], Mozos et al. [25], Usenko et al. [26] and Wohlkinger
et al. [27]. The major difference to the system presented by Klank et al.
[24] is that we perform the actual CAD matching with the 3D environmental
data instead of 2D image data. Mozos et al. [25] and Usenko et al. [26] use
CAD models to create synthetic point clouds of several types of furniture and
extract geometric features which are used to build a vocabulary of objects
via machine learning techniques. After a probabilistic Hough voting step to
generate likely object hypotheses, they apply a RANSAC approach to fit the
objects into the scene and confirm / refute their hypotheses. Like our ap-
proach, they use a parts-based representation of the furniture, and describe
each part using geometric features. The features used in their approach are
all directly based on the points belonging to each part. Our system includes
a surface reconstruction step, which enables us to use the area of a planar
patch as a feature. Another difference is that our system generates hypothe-
ses using an ontological reasoner instead of probabilistic Hough voting.

An impressive recent approach to the problem of 3D object mapping is
the SLAM++ system by Salas-Moreno et al. [28], which performs real-time
recognition of 3D furniture models in RGB-D data. This allows them to
build a 3D object map of the scene and use that map in the SLAM loop to
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simultaneously track the camera pose. The key difference to our approach
is that our system is applicable to arbitrary 3D data like point clouds from
laser scanners and does not rely on the special structure of RGB-D frames.
This allows us to use arbitrary 3D sensors or use several registered frames as
input to cope with the recognition of large objects that can not be captured
in a single frame.

Lastly, the work by Lai et al. [29] should be recognized, which reports
promising results in object labeling using full RGB-D information (color and
depth). However their work focuses on streams of registered point clouds
and thus the available data is usually much more complete than from a
single frame.

Inspired by Gibson’s [30] debated theory in psychology to understand per-
ception as direct perception of affordances for an agent in its environment,
several authors in computer vision and robotics have pursued approaches
sharing the general structure of model-based perception — just that their
models are formulated in terms of (directly perceivable) affordances rather
than geometric features. Chemero and Turvey [31] give an overview about
usages of the affordance concept in Robotics and Al, emphasizing the differ-
ence between traditional Gibsonian (direct perception related) and represen-
tationalist approaches co-existing in the literature.

3. Model-Based Object Recognition

In recent years, CAD models of many kinds of objects have become widely
available. One resource of CAD models is Google’s 3D Warehouse, which
allows querying and retrieving CAD models of virtually any kind of object
via the web. In the domain of furniture recognition, CAD models are often
available directly from the manufacturer or from companies specialized in
creating CAD models for interior designers. We use a database of CAD
models supplied by our university’s furniture manufacturer.

In this paper, we focus on the domain of furniture recognition for several
reasons: First, due to the widespread use of CAD models in interior design,
the availability of CAD models in this domain is especially strong. Second,
most kinds of furniture feature a set of planar surfaces which can be robustly
recognized in 3D point clouds. Third, due to the rigidness of furniture, these
planar surfaces are in a clearly defined relation to each other.

Fig. 1 shows the embedding of our system in a general semantic mapping
framework. We see our model-based object recognition method as comple-



mentary to appearance-based methods based on 2D image features or 3D
shape features.
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Figure 1: System overview. While the present paper is focused on model-based object
recognition, we consider this method as yielding complementary information to standard
recognition methods. So in a more general system architecture, they may well co-exist.
We will not deepen this issue here (Figure reproduced from [15]).

Using the information contained in CAD models for object recognition
has several advantages. Instead of having one classifier for each kind of
object, only the geometric primitives have to be detected. Based on these,
objects are reconstructed. Also, no classifier training and no labeled training
sets are required; to add a new object class, only the CAD model is required.
In the future, it would even be conceivable that such a CAD model could be
retrieved on-line from the web. Another advantage is that once an object is
recognized, the corresponding part of the sensor data can be replaced by the
CAD model, thus filling up occlusions in the sensor data.

On the other hand, appearance-based methods have an advantage where
the to-be-recognized object is non-rigid, does not consist of clearly identifiable
geometric primitives of a certain minimum size or where labeled training
data, but no CAD model is available.

We see our model-based object recognition method as an instance of a
more general system architecture (Fig. 1), consisting of three steps: (1) sur-
face reconstruction (Sec. 3.1), as an instance of geometric primitive detection,
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transforms the input point cloud into a triangle mesh and extracts planar
regions; (2) planar region classification (Sec. 3.2), as an instance of hypoth-
esis generation, classifies the planar regions, detects furniture objects, and
calculates initial pose estimates based on the planar regions; (3) final pose
adjustment (Sec. 3.3), as an instance of hypothesis verification, computes the
final pose using ICP, and places the corresponding CAD model in the scene.

3.1. Surface Reconstruction

Surface reconstruction is our implementation of the geometric primitive
detection step in Fig. 1. The plane extraction for object recognition is done
on a mesh representation of the surfaces captured with the Kinect camera us-
ing the Las Vegas Surface Reconstruction Toolkit (LVR) [32]. LVR provides
an open source C++ library with implementations of several algorithms for
polygonal map generation. A comparison with state of the art reconstruction
algorithms [33] showed that LVR’s Marching Cubes implementation outper-
forms other state of the art methods like Poisson Reconstruction [34] or
Delaunay based methods [35, 36] in arbitrary environments with respect to
geometrical accuracy and topological soundness of the generated meshes.
The surface reconstruction process mainly consists of two steps: initial mesh
generation using Marching Cubes followed by a post-processing pipeline of
several mesh optimization and segmentation algorithms.

Mesh generation is done using an optimized Marching Cubes implemen-
tation that utilizes Hoppe’s distance function [37] to estimate an isosurface
representation of the point cloud data. To generate this isosurface, sur-
face normals for the data points have to be estimated. This is done us-
ing an adaptive RANSAC-based approach that is optimized for sparse data
sets containing Kinect specific discretization effects and noise [32]. To es-
timate a normal, a local plane is fitted to the k nearest points of a query
point (“k-neighborhood”) using RANSAC. For performance reasons, the k-
neighborhood should be as small as possible. Unfortunately, the point density
of Kinect frames and laser scans is not constant, so the k-value has to be
adapted to ensure stable results. Due to discretization effects of the mea-
surement principle of the Kinect, the point clouds often contain line shaped
artifacts. If the k value is too small, the k-neighborhood will be aligned
on such a line, which makes the normal approximation depend solely on
local noise. To avoid this effect, we analyze the bounding box of the k-
neighborhood. In line shaped alignments, one side of the bounding box will
be significantly longer than the others. If such a condition is detected, the

10



RN
SN
Nl

AAASETRRSRAAS
AN

S
==
A
AN

= Voo izt
0

Figure 2: Normal estimation in noisy point cloud data. In sparse data sets, the local
configuration of a fixed k neighborhood might be unsuitable for normal estimation (left).
With adaptive growing, we are able to produce accurate results for the estimated normals,
which results in connected surface reconstructions (right).
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initial £ value will be increased dynamically until the bounding box criterion
is fulfilled. An example for this process is shown in Fig. 2. The combination
of RANSAC based normal estimation with &£ adaption ensures stable normals
even in sparse and noisy point clouds and is thus well suited for Kinect input
data. Usually a k-neighborhood of 10 neighbors is sufficient.

To approximate a triangle mesh representation to the isosurface defined
by the points and normals, a modified Marching Cubes algorithm is used.
This initial mesh is enhanced by several mesh optimization algorithms. To
remove artifacts based on outliers in the point cloud data, small clusters of
connected triangles are automatically removed. Furthermore, LVR delivers a
hole filling procedure to close holes in the mesh that result from occlusions.
After initial mesh generation, hole filling and outlier removal, connected pla-
nar patches in the mesh are extracted. The planar segmentation is done
using a region growing approach. For an arbitrarily chosen start triangle,
the normals of all neighboring triangles are analyzed. As long as the normal
of a neighbor triangle differs no more than a user defined threshold from the
start triangle, this face is marked as used and a new search is started recur-
sively. In our implementation, we used a threshold of 3° to account for the
present sensor noise. Initial experiments showed that higher tolerances lead
to under-segmentation, while a stronger threshold will abort recursion due
to fluctuations resulting from sensor noise. All patches on the same plane
are stored in a list that represents the current plane. The recursive search is
carried on until a bend in the surfaces or a border edge in the mesh is found.
After all triangles of a planar region are found, a new search is started from
an unused triangle. This process is carried on until all triangles in the mesh
have been checked (cf. Algorithm 1).

The output of this algorithm is a set of planar clusters represented through
contour polygons that can be used to generate the model hypotheses for the
object recognition process. In principle, other approaches to detect planar
polygons like [38], [39] or [40] could be used. The main benefit of our approach
is that we can extract the exact concave contours of the planar regions, while
the other approaches are using unions of convex hulls or a-shapes.

To compute model hypotheses, the actual size of an extracted plane is
needed. In contrast to point clouds, the exact area can be easily computed in
a mesh representation by summing up the areas of the created triangles. In
real-life application scenarios, the interesting surfaces of furniture will usually
be populated with objects on top of them, especially in table top scenarios.
For example, take a laid breakfast table where the table top contains dishes,
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Algorithm 1 The mesh simplification algorithm. Faces that have similar
surface normals are detected. The border edges of these planar areas are
fused to polygons.

function REGIONGROWING
for all faces do
FUSE(current normal, current face, current list)
border list <— current list
CREATEPOLYGON(border list)
current list <— empty
end for
end function

function FUSE(start normal, current face, list of borders)
current face < visited
for all unvisited neighbors of current face do
angle < start normal - neighbor normal
if angle < € then
FusEg(start normal, neighbor, list of borders)
else
list of borders < border edge to neighbor
end if
end for
end function
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bowls and various other objects that are needed for a proper breakfast. These
objects will certainly create occlusions and holes in the reconstruction of the
table top plane. As long as our region growing algorithm can find connected
patches of the surface between the present objects, we will get a represen-
tation of that area, but the estimated area will be significantly reduced due
to the occlusions. To restore the initial plane, we re-triangulate the outer
contour of the plane, which is detected via topological sorting. To get an
optimized contour representation, we fuse edges on the same line via contour
tracing using the psimpl library [41]. The outer contour is then triangu-
lated using the OpenGL tesselator. This way, all holes within the plane are
closed and we get a realistic approximation of the area of an occluded planar
surface (cf. Fig. 4).

This approach works fine as long as the outer contour is not interrupted by
shadows of present objects. In this case, the shadow might break the outline
and create a bay in the contour which in turn will decrease the estimated
surface. Alternatively, one could use a convex hull approach to estimate a
surface, but by doing so the surface of non-convex polygons — like the L-
shaped desk in the office dataset (Sec. 4) — would be overestimated. Our
approach can be used for arbitrary shapes. Another problem occurs when a
surface is too populated. In this case, the region growing procedure will not
be able to find a connected remaining surface and the estimated plane will
be split. An approach to solve this problem is to detect close patches which
satisfy similar plane equations. In these cases, their areas can be summed
up. While these optimizations make the area estimation more stable, the
classification step that is described in the next subsection still needs to be
robust to variations from the true area size. An analysis to evaluate the
robustness of our approach is presented in Section 4.

To determine whether a plane is horizontal or vertical, we analyze the
orientation of the normal of a planar patch. If the angle between the normal
and the y axis is smaller than 3°, we label it as horizontal. To classify vertical
patches we project the normal onto the z-z plane. If a patch is perfectly
perpendicular to the x-z plane, the length [ of the projection is exactly 1. To
account for small orientation errors, we classify all patches with ||l —1|| < 0.3
as vertical.

3.2. Planar Region Classification

Planar region classification is our implementation of the hypothesis gen-
eration step in Fig. 1. Once all planar regions have been extracted in the
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Figure 3: Parts of the OWL-DL ontology used for classification: classes (black) and prop-
erties (blue). (Figure reproduced from [16])

previous step, those regions corresponding to pieces of furniture have to be
classified. Here, we make use of the fact that most pieces of furniture are
comprised of planar structures that have a certain size, orientation, height
above ground and spatial relation to each other. These features (and com-
binations of features) are expressed in an OWL-DL ontology in combination
with SWRL rules.

The Web Ontology Language (OWL) is the standard proposed by the
W3C consortium as the knowledge representation formalism for the Semantic
Web. One of its three sub-languages, OWL-DL, corresponds to a Descrip-
tion Logic [11], a subset of First-Order Logic that provides many expressive
language features while guaranteeing decidability. It has been extended by
SWRL, the Semantic Web Rule Language, [42], which allows to write Horn-
like rules in combination with an OWL-DL knowledge base and includes
so-called built-ins for arithmetic comparisons and calculations. We decided
to use OWL-DL as the knowledge representation format for this work for
several reasons: OWL-DL ontologies can be easily re-used and linked with
other sources of domain knowledge from the Semantic Web, they easily scale
to arbitrarily large knowledge bases, and fast reasoning support is available.
In our implementation, we use the open-source OWL-DL reasoner Pellet [43],
which provides full support for OWL-DL ontologies using SWRL rules.

The class hierarchy of the ontology we use here is shown in Fig. 3. The ba-
sic classes are Furniture (the parent class of all recognized furniture objects)
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and Plane (the planar regions of which Furniture objects are comprised). A
set of SWRL rules is applied to the extracted planar regions to assign them
classes in the Plane sub-hierarchy; for example, the lower plane of a shelf can
be characterized by the following SWRL rule:

LowShelfPlane(?p) < HorizontalPlane(?7p)
A hasSize(?p, 7s) A swrlb:greaterThan(?7s, 0.01)
A swrlb:lessThan(?s, 0.5) A hasPosY(?7p, 7h)
A swrlb:greaterThan(?h, 0.08)
A swrlb:lessThan(?h, 0.18)

These rules are not exclusive, so one planar region can receive multiple
labels (e.g., MiddleShelfPlane and ChairSeatPlane). The definitions of the
classes in the Furniture sub-hierarchy refer to these labels; e.g., the fact that
a Shelf consists of three planes on top of each other can be stated as:

Shelf = LowShelfPlane and
(isBelow some (MiddleShelfPlane and
(isBelow some HighShelfPlane)))

Likewise, chairs are defined by a seat and a backrest, both with certain
sizes, orientations, heights above ground and which are perpendicular to
each other. In this work, these rules (which encode the structural model of
the object) were constructed manually. The parameters can be measured
directly from the CAD model — e.g., in the example above, the lower shelf
plane has a height above ground of 0.13m; adding a margin of 0.05m to
compensate for errors in the estimated height, one arrives at the specified
range (0.08 m; 0.18 m). We hope to automate this process in future work.

The classification of planar patches into furniture objects is performed
by the Pellet reasoner. Initially, each planar patch that was extracted dur-
ing surface reconstruction, along with its geometric features (size, position,
orientation, bounding box) and relations to other planar patches is added as
an individual to the ontology’s ABox. Next, the reasoner jointly classifies all
planar patches, using the SWRL rules and class definitions outlined above.

For each detected object, initial position and orientation are estimated.
The position is always the centroid of their main plane. Since chairs have
two perpendicular planes (the backrest and the seat), a unique orientation
can be calculated by the vertical component of the difference vector between
the centroids of those planes (assuming an upright position of the chair). For
tables and shelves, the PCA of the points corresponding to their main plane
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is calculated to define the orientation. Note that the PCA of a rotationally
symmetric object, such as a round table, is not well-defined. This does
not impact the recognition rate of our system, only the initial orientation
estimate; if the object has distinct non-planar features (such as table legs),
this orientation error can be corrected by the next processing step.

3.3. Final Pose Adjustment and Model Replacement

Final Pose Adjustment is our implementation of the hypothesis verifica-
tion step in Fig. 1. The initial pose estimate calculated in the previous step
is potentially inaccurate, since it wholly depends on an abstraction of the
recognized objects as sets of planar regions. Solving this problem requires
closing the loop from the output of our reasoning process back to the low-level
sensor data.

To improve the pose estimate, we match a CAD model with the original
point cloud data using the well-known Iterative Closest Point (ICP) algo-
rithm [44]. Since ICP needs two point clouds as input, we create a surface
sampling of the CAD model to fulfill the algorithm’s requirements. The sam-
pling process assumes that the surface of the CAD model is represented by
a collection of triangles, which is common for standard CAD formats. Each
triangle’s area is sampled by 3D points, according to a desired point den-
sity, which should correlate with the measurement point density of the used
sensor. Each triangle can be sampled either in a regular fashion (see [45]
for details) or in a random fashion, where the number of random sample
points is determined by the size of the triangle’s area and the desired point
density. Since we sample the complete surface of the CAD model, the re-
sultant point sampling does not consider (self-)occlusion from the sensor’s
point of view. While this is generally a valid idea when matching against
a registered point cloud (combining data from several individual frames),
there certainly is room for improvement concerning the matching process for
single frames. During the matching process, all sampled points are assigned
the same weight, which in general yields stable and satisfactory results (see
experiment 4.2). Different weights for certain points of the surface sampling,
e.g., points belonging to the seating surface and backrest of a chair might
improve the alignment of the CAD models. We have not investigated this
idea yet, but it remains an interesting open point for further research. While
the output of ICP, i.e., the average point-to-point error, gives us a rough
idea how well the sampled CAD model fits to the point cloud data, a more
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sophisticated evaluation of the final result is an important part of future
work.

4. Results

We performed three experiments to evaluate the robustness and accuracy
of our recognition system. First, we investigated the effectiveness of our
hole filling procedure separately to see whether it is capable of estimating
the true surface area of a table under the influence of increasing amounts
of clutter. Second, we tested the robustness of our system with respect to
the required similarity between CAD model and actual object. Lastly, we
evaluated the detection accuracy of our complete system on two series of
point clouds captured by a mobile robot.

4.1. Robustness Against Occlusion

In real life applications, furniture is usually used to store objects, so an
obvious problem for our detection procedure is that the surfaces relevant for
recognition may be partially occluded. To evaluate the robustness of the
surface extraction procedure against occlusions, we gradually added typical
objects like books, cups and bottles to a table surface and tried to segment
the table top. We compared the table top surface that was determined by
summing up the reconstructed triangle surfaces during simple region grow-
ing with the contour triangulation approach. The results of this experiment
are shown in Fig. 4 and Table 1. Using region growing, the shadows caused
by the present objects reduce the detectable surface area with increasing
number of objects. These holes are filled up when the outer contour is tri-
angulated. Hence, the detected area for contour triangulation stays close to
ground truth until the outer contour is broken by a shadow (here in the pres-
ence of 12 objects), while the detected area using region growing gradually
becomes smaller due to shadows. The small variances in the reconstructed
areas are caused by noise in the input data that can lead to slightly different
triangulations using LVR’s Planar Marching Cubes algorithm, which shifts
the vertices of the contours to the nearest data point [46]. Since the recon-
struction is based on the noisy input, it is unlikely that the exact ground
truth value is hit.

4.2. Robustness of CAD Matching
While various CAD models for a wide range of objects, including furni-
ture, are freely available on the world web wide via sources like Google 3D
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Figure 4: Segmentation results for a table top setup. First column: the captured point
clouds; second column: initially created triangle mesh; third column: segmentation results.
Triangles that were not classified as belonging to a planar patch are rendered in green. In
each step more objects were added. In the last line a shadow disrupted the outer contour
and the segmentation broke the table top plane into two clusters. (Figure reproduced from

[16])

Warehouse, it is often not easy to find the exact model for a particular piece
of furniture. Also, the physical object might differ from the CAD model for
other reasons (e.g., damage or other modifications).

To investigate how robust our ICP matching step is with respect to such
differences between CAD model and actual object, we conducted an experi-
ment where we matched several CAD models of chairs against recorded point
data of a chair. A photograph of the chair and a view of the resulting point
cloud can be seen in Fig. 5. The point cloud displayed in Fig. bb was created
from five registered Kinect frames.

We matched this data against six different CAD models of chairs that
were retrieved from Google 3D Warehouse (Fig. 6). We considered the Chair
1 model (top left) as a best fit of the actual chair, while Chair 2-4 were
expected to be similar enough to produce meaningful matching results. For
comparison, we included a model of a stool (Chair 5) and a wing chair (Chair
6), which we expected to be too different from the chair in the sensor data
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Table 1: Reconstructed areas in the table top experiment under increasing amounts of
clutter (reconstructed table top area in m? and as percentage of ground truth). First row:
only region growing. Second row: region growing, followed by contour triangulation.

0 obj. 2o0bj. 3o0bj. 4o0bj. 5obj. 6obj. T7obj. 12 obj.

Region 1.50 1.47 1.47 1.40 1.35 1.26 1.17 0.95
Growing 93% 92% 92% 87% 84% 79% 73% 59%

Contour 1.50 1.50 1.49 1.52 1.52 1.52 1.50 1.20
Triangulation  93% 93% 93% 95% 95% 95% 93% 75%

Figure 5: Registered point cloud input data for experiment 4.2: (a) photograph of the
chair; (b) corresponding point cloud composed of 5 Kinect frames; (c) point cloud. Points
are colored according to their distance to the z axis. Note that the Kinect did not provide
sensor readings for the chair legs due to their highly specular surface (evident in (c)).
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Figure 6: CAD models of chairs used for matching against chair depicted in Fig 5. We
considered the top left model to be a best fit, while apart from the stool and the wing
chair all models are similar enough in appearance to provide meaningful results.

to produce good results.

To assess the performance, we define a reference pose X ,er as a replace-
ment for ground truth which is not available. The reference pose was cal-
culated for each model by manually aligning the model to the point cloud,
followed by ICP for the final adjustment (Fig. 8, top row). All models ended
up close to the initial pose except for Chair 6 (the wing chair); this is due to
the large number of points in the wing chair’s base.

For the actual experiment, our ICP model alignment step was run on
each chair model from three different initial poses, resulting in the final pose
X;; see Fig. 7 for the initial poses and Fig. 8 for the final poses.

A pose X itself is composed as a 2-tuple <X1, 5(2->, where X; = (z,v, Z)T
describes the translation part of the pose and X; = (p, ¢, S)T denotes the
rotation as a quaternion. In order to provide a meaningful error between a
reference pose X o and final pose X;, we calculate the translational error
Etranslation and the rotational error e,qtation. The translational error is simply
defined as the Euclidean distance between two poses:

€translation = ||Xz - Xi,ref“ (1>

while €;otationis @ unit quaternion distance metric introduced by Kuffner [47]
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Figure 7: Initial pose visualization, depicted by the example of the reference CAD model
(Chair 1). Initial translation and rotation errors (€translation/€rotation) are as follows. Pose
1 (left): 13.87cm/0.13°; Pose 2 (middle): 0.65cm/27.50°; Pose 3 (right): 36.34 cm/22.5°.

Table 2: CAD matching results. {: Note that this model is rotation invariant around one
axis, so the rotation error does not necessarily reflect the actual quality of the final pose.

final pose error

pose 1 pose 2 pose 3
€translation  Crotation  Ctranslation  Crotation  Ctranslation  Erotation
chair 1 0.5cm 0.47° 0.5cm 0.48° 0.5cm 0.0°
chair 2 0.0cm 0.1° 0.1cm 0.11° 0.0cm 0.0°
chair 3 0.0cm 0.04° 0.0cm 0.04° 0.0cm 0.01°
chair 4 0.1cm 0.04° 0.1cm 0.05° 1.9cm  34.07°

chair 5 T 3.1cm 12.22° 2.2cm  22.55° 3.0cm 12.77°
chair 6 29.5 cm 3.56° 11.1cm  42.81° 109cm  42.85°

as
€rotation — aI'CCOS |Xz : Xi,ref| (2>

Using a unit quaternion distance metric has the advantage that it does
not suffer from ambiguities, unlike the common method of comparing Euler
angles.

The resulting final errors for the six CAD models in this experiment are
shown in Table 2. As expected, Chair 1-4 converged about equally well to
the reference pose (except for one outlier from Chair 4), whereas Chair 5 and
6 did not converge well.

However it has to be noticed that the data used in this experiment was
not very challenging, since the chair is completely captured in the point cloud
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Figure 8: Transparent overlay of the final poses obtained by CAD matching with the
point cloud. Top row: results from an aligned pose estimation. Second from top: results
from pose estimation below actual pose (Pose 1). Second from bottom: results for slight
displacement and rotation error (Pose 2). Bottom row: results for larger displacement and
rotation error (Pose 3). See Fig. 7 for visualization of initial pose.

data and there are no other objects near the chair. To evaluate the effects of
choosing a different CAD model on the performance of the complete system,
we ran the complete pipeline as explained in the next subsection once for each
chair model. Table 3 compares the final translation and rotation errors after
ICP alignment on the seminar room dataset (see Sec. 4.3, Table 4c). The
results clearly indicate that as long as the CAD model is “similar enough”
(chairs 1-4) to the objects found in the data, our system works. The results
for chairs 2-4 were even slightly better than for chair 1, which we consid-
ered the best fit for the actual object and which is used in the subsequent
experiments.

4.3. Complete System

To evaluate our recognition system, we captured two series of point clouds
from a Kinect camera mounted on a mobile robot (see Fig. 9). In the first
scenario, the robot was tele-operated around an office while continuously
capturing point cloud data at 2.2 Hz, resulting in a total of 431 point clouds.
The office contained 13 recognizable objects from 5 classes (1 desk, 1 confer-
ence table, 1 office chair, 5 conference chairs and 5 book shelves). For the
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Table 3: Final translation and rotation errors (after ICP) for the different chair mod-
els, compared on the complete seminar room dataset (single point clouds). Results are
averaged on all 358 true positive detections of chairs in the dataset. The average transla-
tional/rotational errors of the initial pose estimate are 7.3cm/20.3°. The pose errors are
expressed according to equations (1) and (2); {: Note that this CAD model is rotation
invariant around one axis, so that the rotation error does not necessarily reflect the actual
quality of the final pose.

€translation  Crotation

Chair 1 8.3cm 10.0°
Chair 2 6.0 cm 7.8°
Chair 3 7.3cm 7.5°
Chair 4 7.9cm 9.3°
Chair 5 109cm  23.7°
Chair 6 22.6 cm 16.8°

second dataset, the robot was driven through a seminar room, capturing a
total of 379 point clouds. The objects present in this dataset are 12 seminar
tables and 20 chairs. One challenging aspect of this dataset is that there is
a high level of occlusion.

For both datasets, we registered the point clouds into a consistent full-
scene point cloud, using SLAM6D from 3DTK [48]. The full-scene point
clouds were used to generate the ground truth poses for each piece of furniture
by hand. These poses are used to evaluate the results of our classification
and the ICP refinement step.

Ground truth data for each frame was gen-
erated by manually labeling each frame with
the information which of the objects occur in
that frame. The ground truth poses of each
object were estimated by manually placing
each CAD model into a scene consisting of
the fully registered datasets. In combination
with the camera trajectory obtained from the
registration process, the ground truth object
poses in each frame can be computed. A de-
tection is considered “true positive” if its dis-
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Figure 9: The Kurt robot used for
our experiments. (Figure repro-
duced from [16])



tance to the nearest true object pose of the
same class was below a threshold, depending
on the CAD model’s size (15cm for chairs,
25 cm for shelves, 45cm for tables). If mul-
tiple detections fell into that range, only the
nearest was counted as a true positive, and
the others as false positives.

These high thresholds were chosen based
on experience and reflect the diminishing depth resolution of the Kinect
sensor (at 5 m the depth resolution is approx. 5cm — even without noise depth
measurements can differ substantially from the real distance) accompanied
by additional random noise, as well as the size of the discriminating planar
surfaces of the object classes. Furthermore if all individual point clouds are
registered perfectly, there will still be noisy “shadow points” around each
object. Our ground truth poses are located in the middle of the noisy point
cloud resembling the objects in question.

Note that the recognition system itself does not require prior registration;
it can work both directly on unregistered single-frame point clouds or on a
registered full-scene point cloud. Both approaches have their advantages;
directly processing each frame eliminates the computational cost for regis-
tration, removes the risk of registration failures, and avoids artifacts arising
from combining many point clouds from a noisy sensor. Single frame process-
ing is therefore better-suited for online operation in an incremental semantic
mapping framework. On the other hand, the narrow field of view and occlu-
sions — that may be recovered by viewing at an object from different angles
— make it more likely that a piece of furniture is not fully visible.

The detection results both for single frames and the full scene on both
datasets are shown in Table 4. In addition to the detection results, the
translation and rotation error of the initial guess (based on PCA for tables
and shelves, and based on the vector from backrest to seat for chairs) and the
translation and rotation error after ICP pose correction are shown. Fig. 11
depicts some exemplary object detections, Fig. 10 shows the final results of
the system running in full-scene mode.

For the single point clouds, our approach achieves detection rates of
46.0 % and 79.4 % on the two data sets. We expect that these results can be
improved significantly in the future by integrating information over several
frames instead of treating each frame independently. The results show that
our approach is not only robust enough to deal with the noise present in low
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cost 3D sensors, but also copes with occlusion and partial visibility, typical
for sensors with a small opening angle. Unexpectedly, the final ICP pose
correction did not improve the average initial guess on single frames for the
first dataset. We attribute this to the fact that we matched a complete CAD
model to a partially occluded object view; possible solutions are outlined in
the next section. In the second dataset however, ICP clearly improved the
rotation of the chairs compared to the initial guess from the SWRL rules.

The results also show varying detection success for the different classes.
Shelves have one of the lowest detection rates and highest final pose error
in our experiments. This is not surprising: All shelves in our data set were
completely filled with books, so only a small portion of the actual shelf was
visible. This also explains why the final pose correction performed worse
on shelves compared to the other object classes. In addition, we currently
do not handle aggregates of objects: If two shelf segments or two tables are
positioned with no gap between them, the planar classification will combine
them into one potential object, with the possible location at the center of
the combined plane. This usually leads to one false positive (for the non-
existent object at the center location) and several false negatives for actual
objects creating the aggregated plane. Another problematic object is the big
L-shaped desk: The desk is so big that only a small part of it is visible in
most single frames.

A comparison between single-frame and full-scene mode reveals that both
approaches have their complementary strengths and weaknesses. Both clas-
sification accuracy and final pose error for most objects (especially big ones,
like tables) are better in full-scene mode, since there are less problems with
partial visibility due to occlusion or limited aperture. On the other hand, the
detection rate for chairs in the seminar table dataset is higher in single-frame
mode. The main reason for this seems to be that since chairs are relatively
small compared to tables, limited aperture doesn’t pose as much of a prob-
lem in single-frame mode. On the other hand, since the chairs were relatively
close together, registration errors and accumulated sensor noise in full-scene
mode often lead to two chairs being recognized as one object, preventing
detection.

4.4. Runtime of the system

The runtime performance of our system and its components are shown in
Table 5. All experiments have been performed on a standard laptop (2.6 GHz
Core i7 CPU, 8 GB RAM). The single point clouds are processed at full
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Table 4: Detection Rates. The pose errors are expressed according to equations (1) and

(2).
true false false initial initial final final precis. recall F
pos. pos. neg. transl. rot. transl. rot. score
error  error error  error
(a) office dataset (single point clouds):
Shelf 82 53 237 16.2cm 5.1° 60.1 cm 27.2°  60.7% 25.7% 36.1%
OfficeChair 8 19 6 58cm  61.0° 6.0cm  10.8° 29.6% 57.1% 39.0%
ConfChair 100 190 114 9.0cm 51.9° 11.0cm 56.8° 345% 46.7% 39.7%
Desk 10 11 29 3l.6cm  125.6° 53.7cm 118.8° 47.6% 25.6% 33.3%
ConfTable 81 0 0 8.5cm 8.8° 9.4cm 6.2°  100.0% 100.0% 100.0 %
total 281 273 386 11.7cm 28.7° 26.2cm 34.5°  50.7% 42.1% 46.0%
(b) office dataset (full registered scene):
Shelf 1 0 4  24.7cm 1.0° 131.6cm 4.1°  100.0% 20.0% 33.3%
OfficeChair 1 0 0 52cm  68.1° 4.7cm  14.2° 100.0% 100.0% 100.0 %
ConfChair 3 2 2 10.9cm 55.9° 10.1cm 49.1°  60.0% 60.0% 60.0%
Desk 1 0 0 41.8cm 21.2° 12.8cm 6.7°  100.0% 100.0 % 100.0 %
ConfTable 1 0 0 2.5cm 4.3° 6.3cm 0.6°  100.0% 100.0% 100.0 %
total 7 2 6 15.3cm 37.5° 26.5cm 24.7°  77.8% 53.8% 63.6%
(c¢) seminar room dataset (single point clouds):
Chair 358 26 257 7.3cm 20.3° 8.3cm 10.0° 93.2% 582% T71.7%
SemTable 522 153 21 9.3cm 2.5° 9.2cm 24°  773% 96.1% 85.7%
total 880 179 278 8.5cm 9.7° 8.8cm 55° 831% 76.0% 79.4%
(d) seminar room dataset (full registered scene):

Chair 6 2 14 5.7 cm 16.3° 6.0 cm 9.8° 75.0% 30.0% 429%
SeminarTable 11 0 1 4.2cm 1.2° 3.3cm 1.2° 100.0% 91.7% 95.7%
total 17 4 15 4.7cm  6.537° 4.3cm  4.252° 81.0% 53.1% 64.2%
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Figure 10: Final results of our system in full-scene mode (registered full-scene point clouds
overlaid with the recognized furniture models). Left: Office dataset (431 frames). Right:
seminar room dataset (379 frames). Note that point color information is displayed for
reader convenience, our approach does not require it.

Table 5: Run times of the three steps in our processing pipeline on the seminar room data
set. The results for single point clouds were averaged over all 379 point clouds.

single point cloud full registered scene

Surface Reconstruction 6.53s 117.06 s
Planar Region Classification 1.02s 2.67s
Final Pose Adjustment 1.53s 26.11s
Total 9.09s 145.84 s

resolution (245,304 points on average), while the full scene was downsampled
to about one tenth of all points (9,475,220 points).

Most of the processing time is spent on the surface reconstruction step.
This could in principle be replaced by faster but less accurate methods. For
the RGB-D data used here, Kinect Fusion is a good candidate, although the
meshes have to be post-processed to get a topologically correct mesh repre-
sentation [33], which is required for region growing. For our experiments, we
decided to use the Marching Cubes implementation from our LVR library,
since it computes meshes that are accurate and topologically sound. The
classification and pose adjustment steps are fast. The whole scene consisting
of 379 point clouds, i.e., about 9.5 million points, was processed in about 2.5
Minutes.
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5. Summary and future work

We have presented a semantic mapping system that creates a triangle
mesh of an office environment, detects several classes of furniture, and re-
places them by their corresponding CAD models, based on Kinect point
cloud data captured using a mobile robot. The system was evaluated both
on single frames and fully registered scenes of two datasets containing 810
single point clouds. Our system achieved a detection rate of 46.0 % for the
office dataset, containing one particularly large object and several seamlessly
connected instances of shelves and of 79.4 % on the seminar room with less
variation of the classified furniture.

The current system creates a hybrid semantic map (i.e., the map data
contains geometric information as well as semantic knowledge); it does so
incrementally by processing each RGB-D frame separately; and it also does
so in closed loop by feeding the output of the reasoning system back into the
low-level data interpretation routine. In future work, we intend to implement
an active data interpretation / gathering loop that identifies and actively ex-
plores regions with potentially valuable but missing data, thereby closing the
loop even down to the action level, not just the perception level.

Another necessary improvement is a matching criterion that decides how
well a CAD model was matched in the point cloud. Such a criterion could be
used to reject false hypotheses, and to disambiguate between similar models.

The performance of the final ICP pose correction could be improved by
explicitly taking occlusion into account. Instead of trying to match a full
CAD model to the point cloud, a pre-assignment filter similar to [49] could
take only those CAD model points into account, which are expected to have
a corresponding point in the sensor data and vice versa.

Furthermore, we need to improve the generation of the object hypotheses,
especially in scenes where we detect planes that are larger than expected due
to gap-free placement of several pieces of furniture. On top of this it could
prove worthwhile to incorporate the color information provided by RGB-
D cameras when merging planar regions. Last, we plan to automate the
extraction of OWL-DL structural models for hypothesis generation from the
CAD models.
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Figure 11: Results of each step in the processing pipeline. Columns, from left to right:
(a) the original point cloud from a single Kinect frame; (b) the reconstructed triangle
mesh; (c¢) sampled CAD models after ICP pose correction; (d) the point cloud overlaid
with the recognized CAD models. Row 1: error in pose estimation due to only partial
visibility of the desk; Row 2-3: correct placement of the recognized objects; Row 4: several
good matches and one false positive. The color of the models indicates the quality of the
recognition: cyan indicates a true positive, where the pose fits well with the actual pose,
magenta is a true positive where the final pose is not well aligned and yellow shows a
false positive. Rows 1-3 show data from single frames of the office dataset, row 4 from
the seminar room dataset, while row 5 and 6 show the full scene of the office and seminar
room datasets, respectively. (Figure based on [16], extended)
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