
Diplomarbeit

Automatic Feature Construction
for General Game Playing

by

Martin Günther

born on November 10, 1980 in Berlin-Neukölln
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Abstract

The goal of General Game Playing is to construct an autonomous agent that can
effectively play games it has never encountered before. The agent is only provided
with the game rules, without any information about how to win the game. Since
no human intervention is allowed, the agent needs to deduce important concepts
automatically from the game rules.

A central challenge is the automatic construction of an evaluation function that
can estimate the winning chances for any position encountered during game-tree
search. An evaluation function is a weighted combination of features : numerical
functions that identify important aspects of a position.

This thesis presents a method to generate a set of features for General Game
Playing, based on previous work on knowledge-based feature generation. Moreover,
a method is developed that quickly selects features for inclusion in the evaluation
function. The feature construction method is combined with TD(λ) reinforcement
learning to produce a complete evaluation function.

It is shown that the method could successfully generate an evaluation function for
many general games, and an empirical evaluation of its quality is presented.
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1 Introduction

This thesis describes a method for automatic construction of features for utilization
in a heuristic evaluation function. Based on previous work in the area of knowledge-
based feature generation, its applicability to the domain of General Game Playing
is evaluated.

General Game Playing (GGP) is the challenge to build an autonomous agent
that can effectively play games that it has never seen before. Unlike classical game
playing programs, which are designed to play a single game like Chess or Checkers,
the properties of these games are not known to the programmer at design time.
Instead, they have to be discovered by the agent itself at runtime. This demand for
higher flexibility requires the use and integration of various techniques and makes
GGP a grand Artificial Intelligence (AI) challenge.

In recent years, GGP has received an increasing amount of attention. To foster
further research efforts in this area, the annual GGP competition (Genesereth, Love,
and Pell, 2005) was established in 2005. Participating systems are pitted against
each other on a variety of different types of games.

One of the central challenges in building a successful general game playing program
lies in the fully automatic construction of an evaluation function. Such evaluation
functions are essential for guiding search in many different fields of AI. In game
playing, an evaluation function maps each game state to a real number that estimates
the chances of winning the game from this position. A state is typically represented
as a set of facts that uniquely define the state – in a board game, this could be
the exact locations of all pieces on the board, in a card game it could be the cards
held by each player, the number of accumulated points and so on. However, due to
the large state space of most games, learning an evaluation function directly from
this base-level representation of states is generally not feasible. For that reason,
evaluation functions are usually defined as a combination of evaluation features.

Features are numerical functions of a state that capture important properties of
the game. For a board game like chess, these could be the number of pieces of each
type that a player has left, control of the center of the board or certain attacking
relationships. Features provide a way to generalize over a set of states, thereby
immensely simplifying the task of constructing an evaluation function. Using these
features, the evaluation function can be constructed by selecting a functional form
that combines the feature values into a single number, and adjusting the parameters
(weights) of this functional form.

Following this approach, the process of creating an evaluation function can be
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Chapter 1 Introduction

split into two distinct subtasks:

1. feature generation and selection, and

2. evaluation function learning (automatic adjustment of the weights of an eval-
uation function).

The second task has been studied extensively with great success. The most widely
used methods are supervised learning from expert matches and different forms of
reinforcement learning, including the TD(λ) algorithm.

Meanwhile, the first task (the problem of automated feature construction) is still
open: “One of the key problems, that has already been mentioned in Samuel’s famous
Checkers player (Samuel, 1959, 1967), namely the automated construction of useful
features, remains still largely unsolved.” (Fürnkranz, 2007, p. 3).

Surprisingly few researchers have tried to tackle this problem – most notably
Fawcett (1993), Utgoff and Precup (1998) and Buro (1999) – and there has not been
much follow-up work on their approaches, despite the importance of the problem
for automated construction of an evaluation function. One of the reasons may have
been that game playing research in the past was focused on specific games, where
features can be specified manually. But in the new context of GGP, automatic
feature construction suddenly regains relevance.

Of the existing work on feature generation, Fawcett’s approach seems to be best
suited for adoption to GGP, because it makes use of domain knowledge and requires
no human intervention. Some of the previous work in GGP mention Fawcett’s work
(Asgharbeygi, Stracuzzi, and Langley, 2006; Banerjee, Kuhlmann, and Stone, 2006),
but none has actually applied his ideas to the domain of GGP yet.

The aim of this work is to develop, implement and evaluate a system consisting
of

• a feature generation algorithm, based on Fawcett’s approach

• a feature selection algorithm, and

• an evaluation function learning algorithm, using TD(λ) learning

for the GGP framework. All algorithms are implemented in Prolog and integrated
into the General Game Player “Fluxplayer” (Schiffel and Thielscher, 2007b).

The remainder of this work is organized as follows: Chapter 2 reviews the previous
work on feature generation as well as the Game Description Language that is used
to express games in GGP. Chapters 3, 4 and 5 describe the three phases of the
implemented system: feature generation, feature selection and evaluation function
learning. Chapter 6 evaluates the system’s performance on a variety of games.
Chapter 7 concludes with a discussion of the achievements.
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2 Previous Work

In this chapter, we will first give an overview of the previous work on feature con-
struction. Next, the consequences from these previous approaches for the current
thesis will be discussed. The chapter will conclude with an overview of the Game De-
scription Language (GDL) (the language used to describe games in GGP), including
the definitions that will be needed in the remainder of this thesis.

2.1 Feature Construction

The previous approaches to feature construction can be roughly separated into the
following two categories: multi-layer neural networks and symbolic approaches. In
the following two subsections, both will be examined.

2.1.1 Multi-Layer Neural Networks

Multi-layer neural networks can be seen as feature constructing systems in the sense
that the hidden layer of those networks combines the base-level representation of
the game into intermediate concepts. These are combined into a single evaluation
of a state by the output layer. The formation of those intermediate concepts is
not done explicitly, but occurs during the learning phase of the network. Neural
networks have been applied to a wide variety of games, including Backgammon
(Tesauro, 1995), Othello (Leouski and Utgoff, 1996), Chess (Levinson and Weber,
2002; Baxter, Trigdell, and Weaver, 1998), Go (Dahl, 2001) and Poker (Billings,
Peña, Schaeffer, and Szafron, 2002).

However, approaches based on neural networks have two major drawbacks: firstly,
the generated features cannot be interpreted directly by a human; and secondly, the
structure and parameters of the neural network need to be carefully tailored to
the specific application by hand, which makes direct application to GGP difficult.
However, it should be noted that there has been some research on mapping symbolic
domain theories into neural networks (Towell and Shavlik, 1994) that could solve
the second problem.

The following subsections will deal with systems that create symbolic representa-
tions of features: ELF, GLEM, and Zenith.
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Chapter 2 Previous Work

2.1.2 ELF

The Evaluation Function Learner (ELF) algorithm (Utgoff and Precup, 1998) rep-
resents each feature as a boolean function of the algorithm’s boolean inputs1. Each
feature is represented as a vector of the symbols # and 0 ; # (“don’t care”) means
that the corresponding input can have any value, 0 (“false”) means that the input
must be false. The feature only matches those states where all these conditions are
met. Surprisingly, there is no way of expressing that an input must be true; however,
the authors demonstrate that the feature formalism is still sufficient to express any
evaluation function.

ELF can be embedded as a function approximator into any learning framework
that provides 〈state, value〉 pairs, such as supervised learning, comparison training,
reinforcement learning and temporal-difference learning. During the training phase,
ELF both updates the feature weights and adds new features as necessary.

Initially, the feature set only contains the most general feature (exclusively con-
sisting of #’s); during training, the algorithm iteratively

1. identifies the feature that is least able to reduce its error

2. identifies the # in the feature with the largest accumulated error, and

3. makes a copy of this feature where this # has been replaced by a 0.

ELF has been applied to Tic-Tac-Toe and the Eight-Puzzle, using supervised
learning with the perfect game-theoretic state values (Tic-Tac-Toe) resp. the optimal
distance to the goal (Eight-Puzzle) as training signal. ELF was also used to learn
to play Checkers from self-play with limited success (Fürnkranz, 2001).

2.1.3 GLEM

The Generalized Linear Evaluation Model (GLEM) algorithm (Buro, 1999) con-
structs new features as conjunctions of boolean atomic features.

Contrary to ELF and Zenith, GLEM does not interweave feature generation and
parameter tuning. Instead, all used features are generated beforehand. Since the
number of possible conjunctions grows exponentially with the number of atomic
features, the legal conjunctions are restricted to a user-defined set of patterns (in
Buro’s experiments on Othello, these patterns only allowed conjunctions of atomic
features of the same row, column, diagonal or corner regions of the board). To avoid
over-specialization, all generated features are tested on a large set of example states,
and those whose matching ratio lies below a certain threshold are excluded.

The final evaluation function combines the features linearly and applies a sigmoid
squashing function – similar to that used in neural networks – to avoid saturation

1These inputs are called state variables by Utgoff and Precup and will be called fluents in this
thesis.
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2.1 Feature Construction

effects. The weights are fitted using least-squares optimization on a labelled training
set. One common way to generate this training set is from expert matches. Another
way that is proposed by Buro is to generate the training set from the game-tree
search itself: Using the fact that practically all Othello matches take between 58
and 60 plies, the game is partitioned into 15 stages, and a separate set of weights
is calculated for each of these stages. First, an evaluation function for the final
stage of the game (plies 57–60) is trained, generating the labelling by exhaustive
search. Next, this evaluation function is used to label example states generated by
game-tree search for the pre-final stage (ply 53–56). This labeled training set can be
used to train an evaluation function for the pre-final stage and so on. During actual
game-play, the correct evaluation function to use is determined by the ply number.

The atomic features could simply be all fluents of the game (e. g., the contents of
each field of the board), allowing GLEM to generate – in principle – any possible
evaluation function. This approach worked very well for Othello (in combination
with the handcrafted patterns mentioned above). However, Buro points out that
when using such a simple set of atomic features, important concepts of many other
games, such as the“attacks”relationship in chess, have a very long description length
and are unlikely to be discovered by the algorithm. Therefore, the set of atomic fea-
tures should be carefully tailored to the specific application domain: “GLEM allows
the program author to concentrate on the part of evaluation function construction,
where humans excel: the discovery of fundamental positional features by reasoning
about the game” (Buro, 1999, p. 143). Hence, GLEM should not be seen as a fully
automatic feature construction algorithm, but rather as a system that eases the task
of constructing features and reduces the amount of manual work required.

GLEM has been used to learn an evaluation function for Logistello, the best
Othello-playing program of its time. The evaluation function created by GLEM
greatly outperformed Logistello’s previous evaluation function that was based on
purely handcrafted features.

2.1.4 Zenith

Since this thesis will be mainly based on Fawcett’s work, his Zenith system (Fawcett,
1993, 1996; Fawcett and Utgoff, 1992) will be examined in more detail than the other
two. Zenith has been applied to the game of Othello. It could successfully regenerate
many known features from the literature, and even at least one novel feature.

Zenith is the only one of the three systems that uses analysis of a declarative
domain theory (the game’s rules) for deriving the features. The language in which
this domain theory is expressed is Prolog; arbitrary Prolog predicates are allowed,
which makes Fawcett’s domain description language strictly more expressive than,
for example, the more common STRIPS formalism.

Similar to GDL, the domain theory contains predicate declarations for precondi-
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Chapter 2 Previous Work

tions and effects of actions, terminal states and goal values2. Additionally, it contains
information on the modes and determinacy3 of all predicates, whether a predicate is
state-specific or not, and the preimages of all state specific predicates (which greatly
simplifies the implementation of a regression transformation later on). In contrast
to GDL, the preconditions and effects of an action are specified explicitly for each
action, making frame axioms unnecessary.

A Zenith feature is represented as a logical formula using terms from the domain
theory, along with a variable list. The value of a feature in a state is defined as the
number of unique bindings of variables in this list that satisfy the formula. Since
this formalism is the basis of this thesis, it will be covered in detail in Chapter 3.

Starting from the goal concept, Zenith iteratively develops sets of features through
a series of feature transformations (feature generation phase) and applies its learning
algorithm to assign weights to each feature. The feedback from learning is used to
guide the selection of used features (feature selection phase) before the next cycle
starts. This process is depicted in Figure 2.1 on the facing page; the next two
subsections will cover these two phases in greater detail.

Feature Generation

Zenith keeps track of two separate sets of features: the active set and the inactive
set. The active set contains all features that are currently used in the evaluation
function; the inactive set holds a limited number of potentially valuable features
that have not been selected by the feature selection phase (see below).

Zenith’s feature transformations4 are listed in Table 2.1 on page 8. During the fea-
ture generation phase, these transformations are applied to both active and inactive
sets, following these rules:

1. decomposition transformations can be applied to all features;

2. abstraction and specialization transformations are only applied to expensive
features (features whose computation time exceeds a certain threshold); and

3. goal regression is only performed on features that are both active and inex-
pensive.

2Curiously, the domain theory (Fawcett, 1993, Appendix A) does not contain any information on
the initial state, but this is probably a detail due to Fawcett’s separate implementation of the
state representation.

3The determinacy of a predicate specifies what combinations of bound and unbound arguments
in a call to this predicate will produce at most one solution.

4Since slightly modified versions of Fawcett’s feature transformations are used in the current
thesis, a more formal description of those transformations will follow in Section 3.3.
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2.1 Feature Construction

Figure 2.1: Feature generation and selection (source: Fawcett, 1993, modified)
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Table 2.1: Transformations in Zenith (source: Fawcett, 1993)

Class Name English description

Decomposition split-conjunction Split conjunction into independent
parts

remove-negation Replace ¬P with P
split-arith-comp Split arithmetic comparison into

constituents
split-arith-calc Split arithmetic calculation into

constituents
Abstraction remove-LC-term Remove least constraining term of

conjunction
remove-variable Remove a variable from the feature’s

variable list
Goal Regression regress-formula Regress a feature’s formula through a

domain operator
Specialization remove-disjunct Remove a feature’s disjunct

expand-to-base-case Replace call to recursive predicate with
base case

variable-specialize Find invariant variable values that
satisfy a feature’s formula

8



2.1 Feature Construction

Expert’s move

Expert’s move

Zenith’s move

a b c d

e f g

Training data generated from the
game tree on the left, in the form
〈state1, state2, expected output〉:

{〈c, a, 1〉, 〈c, b, 1〉, 〈c, d, 1〉,
〈a, c,−1〉, 〈b, c,−1〉, 〈d, c,−1〉,
〈g, e, 1〉, 〈g, f, 1〉,
〈e, g,−1〉, 〈f, g,−1〉}

Figure 2.2: Preference Pair Learning

In order to restrict the number of generated features even more, only the first
applicable feature transformation is performed in a cycle (however, a single trans-
formation can generate several new features). If the feature is still present in a
subsequent cycle, the next applicable feature transformation will be performed.

Feature Selection

The purpose of the feature selection phase is to find a new set of active features such
that

1. the features with the best predictive value are selected, and

2. the overall computation time of the evaluation function does not exceed a fixed
threshold.

In order to attain a measure of the features’ predictive values, Zenith constructs
an evaluation function from all newly generated features, along with the old ones,
and uses a learning algorithm to estimate their weights. The algorithm used for
this is known as preference pair learning or comparison training (Tesauro, 1989).
Instead of constructing a regular evaluation function, this algorithm learns a pref-
erence predicate that indicates which of two states is preferred over the other. The
algorithm needs training data in the form of labeled preference pairs.

Zenith generates this training data by playing a single game, using the old evalu-
ation function, against an expert opponent, in this case Wystan (an Othello playing
program using 6-ply search and a hand-crafted evaluation function). From observ-
ing the expert’s moves, more specifically which successor state was preferred over
all other successor states, about 250 preference pairs per game can be inferred (this
process is depicted in Figure 2.2). These are added to the training data collected
during the previous cycles.

9



Chapter 2 Previous Work

Using this training data, any supervised learning algorithm for training a function
approximator can be employed. Fawcett performed experiments with both a linear
threshold unit (perceptron) and a decision tree learning algorithm (named C4.5).

After the training algorithm has assigned weights to the features, a näıve method
for selecting the best features would be to simply select those features with the
greatest weights. However, this is not possible due to the statistical phenomenon
of multicollinearity: many of the generated features’ outputs are highly correlated,
sometimes even identical, although the syntactic representation is different. While
this does not reduce the predictive power of the whole evaluation function, it means
that its weights become very volatile and may change erratically after removing even
a single feature. Also, the relative importance of a feature can be either over- or
underestimated.

The remedy chosen by Fawcett is called sequential backward selection: Instead of
running the learning algorithm only once, it is run several times, starting with all
(active and inactive) features. On each iteration, a different feature is left out.

Then, the classification accuracy of each of these reduced evaluation functions
is tested on a validation set of preference pairs. This way, the worst feature (i. e.,
the feature whose removal has the smallest impact on the quality of the evaluation
function) can be identified and cast out. Then, the procedure repeats until the
overall computation time of the remaining features falls below the threshold. The
remaining features form the new active set, all others the new inactive set. While this
method is statistically sound and reliably eliminates the problem of multicollinearity,
it involves repeating the whole learning process up to (n2/2) times for n features in
each iteration of the algorithm.

2.2 Adaptation to GGP

One key difference between the three approaches is that both ELF and GLEM make
no use of a domain theory, while Zenith does. The GLEM algorithm compensates for
this by allowing the user to manually specify atomic features, containing important
concepts that are difficult to express directly as a conjunction of fluents. However,
since such manual interference is not possible in GGP, and a domain description is
available, Zenith was chosen as a basis for this thesis.

One of the premises of this work was that, contrary to Zenith, TD(λ) reinforcement
learning should be used as a learning algorithm. The reason behind this decision
and the consequences it has for the current thesis will be explained in the following
subsections.

10



2.2 Adaptation to GGP

2.2.1 Problems with Zenith’s Learning Algorithm

Fawcett notes that: “In most runs the classification accuracy of Zenith’s preference
predicate rises almost monotonically; however, the corresponding effect on problem
solving performance is much more erratic than would be expected.” (Fawcett, 1993,
p. 115). He suggests several possible explanations for this phenomenon, including
that some decisions are more important than others, and the learning algorithm may
fail to identify critical turning points in a game. One of the remedies he suggests is
the use of Temporal Difference (TD) learning.

Another possible explanation for this erratic behaviour is that the training set is
enlarged by only a single match per cycle. In the reported experiments, Zenith was
run for ten cycles, which means that Zenith’s whole game-play experience is based
on merely ten matches at most, and considerably less for the first cycles.

2.2.2 Problems with Zenith’s Feature Selection

The main problem with Zenith’s feature selection method is that the learning process
has to be repeated O(cn2) times, where n is the number of concurrent features and
c the number of cycles (see Section 2.1.4). Fawcett notes that “feature selection
remains one of the most expensive components of Zenith, and probably will remain
so. Other selection methods were tested (Kittler, 1986; Kira and Rendell, 1992)
but were either too expensive or failed to satisfy Zenith’s requirements for feature
selection. Because of the criticality of feature selection, the search for an inexpensive
but accurate selection method remains an important area of future work” (Fawcett,
1993, p. 114).

The fact that the learning process is repeated so often in Zenith has two important
consequences. Firstly, a very fast learning algorithm and a small training set had
to be chosen, even if it has certain disadvantages (see Section 2.2.1). Secondly,
the number of features that are kept at any single time must be strictly limited in
Zenith. The fact that Zenith uses an iterative approach makes the situation even
worse, because learning has to start from scratch in each cycle. This explains the
restrictions placed on feature generation and the limited number of features kept in
the active and inactive feature sets; these restrictions make Zenith’s feature selection
process a beam search. The greedy nature of a beam search makes it possible that
important features are missed.

In Fawcett’s experiments with Othello, Zenith generated a total of about 200
features, of which only at most 30 were contained in the combined active and inactive
feature sets, and 16 were finally selected after six days of computation5. To improve

5The absolute computation times mentioned cannot be compared directly, because the hardware
Fawcett used in 1993 much slower than today’s hardware. The numbers are only reported to
give the reader an impression of the time constraints.
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the accuracy of the resulting evaluation function, it would be desirable if a larger
portion of the feature space could be explored.

GLEM, on the other hand, generated and selected more than 100,000 features
for Othello. Since the game was partitioned into 13 stages, each using its own
evaluation function, more than a million weights had to be fitted using around 11
million training positions. This was accomplished in about 30 hours of computation
time. Using this many features makes it less likely that important ones are missed;
it shifts the task of selecting the important features from the feature selection to the
parameter learning algorithm.

This huge difference in the feasible number of features can partly be explained
by the fact that GLEM could use highly specialized Othello functions, while Zenith
(due to its generality) had to interpret the domain theory. Also, GLEM’s feature
formalism (simple conjunctions of boolean values) allows to use very efficient meth-
ods for computing the matching features and for storing and updating the weights.
Still, this number of weights could only be learned because the training algorithm
only had to be run once. In fact, Buro states that “Taking into account the large
number of features needed for an adequate evaluation in complex domains, and the
resulting considerable effort for optimizing weights, it seems hopeless to combine
feature construction and weight fitting” (Buro, 1999, p. 144).

2.2.3 Consequences for Feature Generation and Selection

In conclusion, the high complexity of sequential backward selection and the iterative
approach forced Fawcett to severely restrict the number of generated features, and to
use an inexpensive but inaccurate learning algorithm, combined with a tiny instance
set, to keep the time complexity of Zenith manageable.

While TD learning could improve the actual game-play performance, it typically
has to be run on at least hundreds of matches – it is more accurate, but also more
expensive than preference pair learning. The consequence is that repeating the
learning process thousands of times becomes infeasible.

These considerations lead to the decision to use a non-iterative approach to fea-
ture generation and feature selection in this thesis, combined with TD learning as
the learning algorithm. In this non-iterative approach, feedback from the learning
algorithm cannot be used to guide the selection of features, so a new method for
feature selection has to be developed.

2.3 Game Description Language

The Game Description Language (GDL) (Genesereth et al., 2005) is the language
used inf GGP to communicate the rules of the game to each player. It is a variant
of first order logic, enhanced by distinguished symbols for the conceptualization of

12
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games. GDL is purely axiomatic, i. e. no algebra or arithmetics is included in the
language. If a game requires some algebra or arithmetics, the relevant portions have
to be axiomatized in the game description.

The class of games that can be expressed in GDL can be classified as n-player
(n ≥ 1), deterministic, perfect information games with simultaneous moves. “De-
terministic” excludes all games that contain any element of chance, while “perfect
information” prohibits that any part of the game state is hidden from some players,
as it is common in most card games. “Simultaneous moves” allows to describe games
where all players move at once (like Roshambo), while still permitting to describe
games with alternating moves (like Chess or Checkers) by restricting all players ex-
cept one to a single “no-op” move. Also, GDL games are finite in several ways: The
state space consists of finitely many states; there is a finite, fixed number of players;
each player has finitely many possible actions in each game state; and the game has
to be formulated such that it leads to a terminal state after a finite number of moves.
Each terminal state has an associated goal value for each player, which needs not
be zero-sum.

A game state is defined by a set of atomic properties, the fluents, that are rep-
resented as ground terms. One of these game states is designated as the initial
state. The transitions are determined by the joint actions of all players. The game
progresses until a terminal state is reached.

Example 2.1. Listing 2.1 on the next page shows the GDL game description6 of the
game Tic-Tac-Toe7.

The role keyword (lines 1–2) declares the argument, xplayer resp. oplayer, to
be a player in the game.

The initial state of the game is described by the keyword init (lines 4–9). Initially,
all cells are blank (b) and xplayer is first to move.

The keyword next (lines 11–16) defines the effects of the players’ actions. For
example, line 11 declares that, after xplayer has executed action mark(M, N), the
fluent cell(M, N, x) will hold in the resulting state, meaning that cell(M, N) is
marked with an x. The reserved keyword does can be used to access the actions
executed by the players, while true refers to all fluents that are true in the current
state. GDL also requires the game designer to state the non-effects of actions by
specifying frame axioms, as can be seen on line 14: A cell that is not blank will still
have its current mark in the resulting state, regardless of the players’ actions.

The keyword legal (lines 19–24) defines what actions are possible for each player
in the current state; the game designer has to ensure that each player always has
at least one legal action available. All GDL games have simultaneous moves; games
with non-simultaneous moves, like Tic-Tac-Toe, can be expressed by introducing a

6We use Prolog notation with variables denoted by uppercase letters. All reserved GDL keywords
are shown in bold.

7A short description of the games used for this thesis can be found in Appendix A.
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Listing 2.1 Some GDL rules of the game Tic-Tac-Toe

1 role ( xp layer ) .
2 role ( op layer ) .
3

4 in i t ( c e l l (1 , 1 , b ) ) .
5 in i t ( c e l l (1 , 2 , b ) ) .
6 in i t ( c e l l (1 , 3 , b ) ) .
7 . . .
8 in i t ( c e l l (3 , 3 , b ) ) .
9 in i t ( c o n t r o l ( xp layer ) ) .

10

11 next ( c e l l (M, N, x ) ) :−
12 does ( xplayer , mark (M, N) ) .
13

14 next ( c e l l (M, N, Mark ) ) :−
15 true ( c e l l (M, N, Mark ) ) ,
16 Mark \= b .
17 . . .
18

19 legal (Role , mark (M, N) ) :−
20 true ( c e l l (M, N, b ) ) ,
21 true ( c o n t r o l (Role ) ) .
22

23 legal ( xplayer , noop ) :−

24 true ( c o n t r o l ( op layer ) ) .
25 . . .
26

27 goal ( xplayer , 100) :−
28 l i n e ( x ) .
29 . . .
30

31 terminal :−
32 ( l i n e ( x ) ; l i n e ( o ) ; not open ) .
33

34 open :−
35 true ( c e l l (M, N, b ) ) .
36

37 l i n e (Mark) :−
38 ( row (M, Mark ) ;
39 column (N, Mark ) ;
40 d iagona l (Mark ) ) .
41

42 row (M, Mark) :−
43 true ( c e l l (M, 1 , Mark ) ) ,
44 true ( c e l l (M, 2 , Mark ) ) ,
45 true ( c e l l (M, 3 , Mark ) ) .
46 . . .

fluent that tracks which role is next to move (here called control) and only allowing
non-effect moves (here called noop) for the other players, as can be seen on line 23.

The goal predicate (lines 27–28) assigns a number between 0 (loss) and 100 (win)
to each role in a terminal state. The game is over when a state is reached where the
terminal predicate (lines 31–32) holds.

Lines 34–45 show some of the auxiliary predicates defined in Tic-Tac-Toe.

Since GDL is under constant development, we will now formally define what will
be considered a legal GDL formula in this thesis. This vocabulary forms the basis
for definitions later in this thesis.

Definition 2.1 (Term). A term is a variable or a function symbol applied to terms
as arguments (a constant is a function symbol with no argument).

Definition 2.2 (Atom). An atom is a predicate symbol applied to terms as argu-
ments.

Definition 2.3 (Formula). A formula is defined inductively as follows:

• If A is an atom, then A is a formula;

• if T1 and T2 are terms, then both T1 = T2 and T1 6= T2 are formulæ;
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• if F is a formula, then ¬F is a formula;

• if F and G are formulæ, then both F ∧G and F ∨G are formulæ;

• nothing else is a formula.

The current GDL specification puts additional restrictions on valid GDL formulæ:

1. equality (=) is not allowed;

2. disjunctions are not allowed; and

3. negations are only allowed directly in front of atoms.

The first restriction was omitted here to make the implementation of several trans-
formations more straightforward, but they could easily have been implemented with-
out equality. The second and third restriction were omitted in order to maintain
compatibility with older GDL games that use rules of that kind.

Definition 2.4 (Clause). A clause is an implication “H ⇐ B” or “H ⇐”, where
head H is an atom and body B is a formula.

Definition 2.5 (Predicate). A predicate is a collection of all clauses of a game
description whose heads all have the same predicate symbol and arity.

Definition 2.6 (Fluent). A fluent is a ground term whose function symbol occurs
as an argument in the game description’s init or next predicates.

Fluents represent the atomic properties of a game. For example, cell(1,3,x) is
a fluent that occurs in Tic-Tac-Toe.

Definition 2.7 (State). A state is a set of fluents.

An example for a state that can be reached in Tic-Tac-Toe is

{cell(1,1,x), cell(1,2,x), cell(1,3,o), cell(2,1,o), cell(2,2,b),
cell(2,3,b), cell(3,1,b), cell(3,2,b), cell(3,3,o), control(xplayer)} .

The state is used in GDL in the following way: In GDL, there is always assumed
to be a “current state” with respect to which any GDL formula is evaluated. This
state does not explicitly occur in the formula; instead, the special GDL predicate
true evaluates to true for all elements of the current state and to false otherwise.
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In this chapter, we will first formally define the feature formalism that constitutes
the basis of this work. Then, the feature generation algorithm will be described.

3.1 Feature Formalism

In Zenith’s feature formalism, which will also be used in this work, a feature is
represented using a formula and a variable list. Intuitively, the evaluation of a
feature is the number of possible bindings for the variables in the variable list. The
following definitions capture these notions more formally.

Definition 3.1 (Feature Formula). Let ∆ be a GDL game description1, and let G
be the dependency graph for ∆. Then, F is called a feature formula, if each atom
with predicate symbol P that occurs in F satisfies the following conditions:

1. P is neither role, init, nor next, and

2. in G, there is no path between P and does.

Basically, any GDL formula that would be valid as the body of a goal or terminal
rule is a valid feature formula.

Definition 3.2 (Variable List). A variable list for feature formula F is a list (or
vector) whose elements are a subset of all free variables that occur in F , including
the full and the empty list.

Definition 3.3 (Feature). A feature is a pair 〈F,~v〉, where

• F is a valid feature formula, and

• ~v is a valid variable list for F .

The evaluation of a feature is a function that maps each state z to a number
n ∈ N. This feature value n is defined to be the number of distinct bindings of
variables in the feature’s variable list that satisfy the feature’s formula in z. More
formally:

1For a full formal definition of the terms game description and dependency graph, see the official
GDL specification (Love, Hinrichs, Haley, Schkufza, and Genesereth, 2008). All restrictions
placed on the dependency graph also apply here.
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Variable list Variable bindings
satisfying formula

Evaluation

[] {[]} 1
[N] {[1], [3]} 2
[M1] {[1], [2]} 2
[M1, M2] {[1, 3], [2, 3]} 2
[M1, M2, N] {[1, 3, 1], [2, 3, 1], [1, 3, 3]} 3
. . . . . . . . .

Figure 3.1: Evaluations of five features using different variable lists and the feature
formula true(cell(M1, N, x)) ∧ true(cell(M2, N, o))

Definition 3.4 (Evaluation). Let ϕ = 〈F,~v 〉 be a feature, and let ~w be the vector
of all free variables in F but not in ~v. Then, the set S is defined as

S := {~v | ∃~w. F (~w,~v)} (relative to state z),

and the evaluation of ϕ in z is defined as evalϕ(z) := |S|.
This definition implies that for a feature with ~v = [ ], S = {[ ]} and therefore

evalϕ(z) = 1 if the formula F can be satisfied in z, and evalϕ(z) = 0 otherwise.
As an abbreviation, if evalϕ(z) > 0 for a feature ϕ and a state z, we will say that

“ϕ matches in z”.
This feature evaluation process is demonstrated in Figure 3.1. The evaluations of

five different features are shown, all using the same feature formula, but a different
variable list.

3.2 Feature Generation Algorithm

The purpose of the feature generation phase is to generate a large set of features from
the game description. From this set, the feature selection algorithm (Chapter 4) will
select a smaller set of features for inclusion in the evaluation function. Eventually,
the evaluation function learning algorithm (Chapter 5) will run training matches to
learn the weights of the evaluation function.

An overview of the FeatureGeneration algorithm is given in Figure 3.2 on
the next page. Its general structure is to iteratively generate a series of feature sets
until no more features can be generated.

The initial set of features is created from the goal and terminal predicates of
the current game description. Each clause of these predicates becomes the formula
of a new feature. The initial features start with a full variable list.

Starting with this initial feature set, the algorithm passes each feature in the
current set to several feature transformations, which generate several new features
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...

transformation 1

feature set i

transformation n

transformation 2

duplicate removal

feature set i+ 1

...

simplifier

simplifier

simplifier

...

trim-variables

trim-variables

trim-variables

Figure 3.2: Overview of the feature generation process

from it. Not all feature transformations are applicable to all features, so there may
be transformations which generate no new features, for example transformation 2 in
the figure.

Each generated feature is passed through a simplifier, which tries to apply syn-
tactic simplifications to a feature’s formula. The simplifier may determine that a
formula is unsatisfiable, in which case the feature is rejected; otherwise, it is passed
on through an optimization called trim-variables, which will be explained in Sec-
tion 3.5 and can be ignored for now.

Afterwards, all newly generated features are passed to the duplicate removal pro-
cedure, which checks whether a feature has been generated before. If that is the
case, the duplicate feature will be dropped. All remaining features form the next
feature set. The algorithm is repeated until no more features can be generated. At
this point, all generated feature sets are unified and returned.

Each part of the algorithm will be presented in the following subsections: the
feature transformations (Section 3.3), the simplifier (Section 3.4), the trim-variables
optimization (Section 3.5) and duplicate removal (Section 3.6). Section 3.7 will
discuss additional restrictions to the transformations.
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3.3 Feature Transformations

The feature transformations implemented for this work are mostly identical to those
used in Zenith. Where the difference in domain languages made it necessary to
change a transformation, it will be pointed out in the respective subsection.

In this thesis, the transformations are grouped into abstraction, specialization
and other transformations. Abstraction transformations have the property that
the resulting feature will match all states that the original feature matched, and
possibly some more; the opposite is true for specialization transformations. All
features that fit in neither of these two groups have been placed into the third group
(“other transformations”). The notions of abstraction and specialization will be
formally defined in Chapter 4. Strictly speaking, the counterpart of “special” would
be “general” and that of “abstract” would be “concrete”. Nevertheless, the terms
“abstraction” and “specialization” will be used to keep the terminology consistent
with Fawcett and other related work such as Prieditis (1993).

Whenever a transformation is applied, the newly generated feature inherits the
variable list from its parent (exceptions will be mentioned in the description of the
respective transformation). Variables that are not present any more in the new
feature’s formula are removed, variables that have been newly introduced are added
to the list.

3.3.1 Abstraction Transformations

Split-Indep-Conjunctions

This transformation splits a feature with a conjunctive formula into independent
parts, based on their common use of variables.

First, the original formula is split into its conjuncts. Each conjunct is also a
formula: an atom, a negated formula, a disjunction, an equality or inequality. Next,
the variables used in each conjunct are determined; whenever two conjuncts share
at least one variable, they are placed into the same set. Finally, a new feature is
created from each of these sets whose formula is a conjunction of the set elements.

For example, the feature

〈(p(W,X), q(X, Y ), r(Y ), s(Z), t(u)), [X,Z]〉

would be split into the following parts:

1. 〈(p(W,X), q(X, Y ), r(Y )), [X]〉, based on the variables X and Y ;

2. 〈s(Z), [Z]〉 – the variable Z appears in no other conjunct; and

3. 〈t(u), []〉 – this term contains no variables at all.
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The justification for this transformation is that the satisfiability of each subfor-
mula can be established independently of the other formulæ, and splitting them
into separate features both reduces the feature’s complexity and allows the learning
algorithm to assign independent weights to each part.

Remove-Conjunct

This transformation removes a single conjunct from a feature’s formula. Fawcett
called this transformation remove-LC-term (short for “remove least constraining
term”; “term” is used here in the Prolog sense of the word). He distinguished three
classes of “criticality” of terms:

1. state-dependent terms that can be achieved by one of the actions of the player
controlled by Zenith;

2. state-dependent terms that cannot be achieved by the Zenith player; and

3. state-independent terms.

Zenith’s remove-LC-term transformation only removed one of the least critical
terms of a formula. Due to Fawcett’s implicit handling of states, he had to require
that the state-dependency of all predicates had to be given explicitly in the game
description, which allowed him to distinguish criticalities 1 and 2 from criticality
3. To distinguish between criticalities 1 and 2, Zenith calculated all regressions of
the formula and checked whether the term was still present in all of the formula’s
pre-images; if it was, the term was assigned a criticality of 2, otherwise 1.

In this implementation, the decision was made not to distinguish between criti-
calities 1 and 2. The reason is that in GGP there is no clear distinction between
our player’s actions and the opponent’s actions: all players move simultaneously.
Games with non-simultaneous moves are simulated by only allowing a “no-op” move
for all players except the one in control. While deeper analysis of the game could
reveal these no-op moves, there are still games (for instance, Merrills) where the
same player can stay in control for several moves. Thus, using a single step of goal
regression to determine whether a given fluent can be achieved by a certain role was
deemed too unreliable. This decision means that remove-conjunct is more general
than Zenith’s remove-LC-term, since it produces all features that remove-LC-term
did, plus some additional ones.

The current remove-conjunct transformation still distinguishes between state-
dependent and state-independent formulæ. In GDL games, it is not necessary to
state the state-dependency of a predicate explicitly; instead, the following definitions
were used that can be checked statically:

Definition 3.5 (State-Dependent Predicate & Formula). Let G be the dependency
graph for a game description ∆. Then, a predicate P is called a state-dependent
predicate if there is a directed path between P and true, or if P equals true.
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A formula F is called a state-dependent formula if it contains an atom whose
predicate symbol belongs to a state-dependent predicate.

Using this definition, remove-conjunct checks for each conjunct of the original
feature’s formula whether it is state-dependent or not and only removes a conjunct
if it is state-dependent. For each such conjunct, a new feature is generated that has
the original feature’s formula except this conjunct.

The reason why state-independent formulæ are not removed is that they pro-
vide a “skeleton” of constraints on the feature’s variables that must be met in any
state, and removing them almost always leads to bad features. The presence of flu-
ents, and therefore the satisfiability of state-dependent formulæ, on the other hand,
may change over time. For example, consider the following feature from the game
Connect-Four:

〈(true(cell(X1, Y, w)) ∧ succ(X1, X2)

∧ true(cell(X2, Y, w)) ∧ succ(X2, X3)

∧ true(cell(X3, Y, w)) ∧ succ(X3, X4)

∧ true(cell(X4, Y, w))), [X1, X2, X3, X4]〉 .

While removing any of the true atoms will produce a valuable feature, removing
either of the succ atoms – which state that the second argument must be the number
succeeding the first – will not.

Fawcett sees the purpose of this transformation mainly in the reduction of com-
putation cost, and states that it produces features which provide less information
about a state; while this is true, it can also be argued that remove-conjunct can
sometimes produce features which generalize better and match more states, since
irrelevant details are removed. In the extreme case, one of the conjuncts of a formula
depends on a fluent which is only true in terminal states but has little significance
with respect to the goal values. In such a case, without removing this conjunct, the
feature could provide no information at all about non-terminal states.

Remove-Variable

This transformation removes one variable from the feature’s variable list, while leav-
ing the formula unchanged. This produces less expensive features and also allows
the creation of features that concentrate on counting one aspect of a feature, thereby
allowing the learning algorithm to assign separate weights to separate aspects. For
example, in Chess there may be a feature that counts the number of weight pawns
attacking the number of black pawns; it might be useful to know the number of
attacking white pawns, as well as the number of black pawns under attack, instead
of just knowing the product of the two.

Since a feature produced by remove-variable provides less information about a
state than the originating feature, remove-variable is also – for the time being –
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counted as an abstraction information, although the resulting feature matches the
same states as the original one.

3.3.2 Specialization Transformations

Split-Disjunction

Zenith contained a transformation called remove-disjunct, which simply removed
a disjunct occurring in a feature’s formula. In this thesis, however, the choice was
made to use a new transformation, called split-disjunction, instead. It works
only on features that have a disjunctive formula, and splits this formula completely,
generating one new feature from each disjunct. This is possible because, in con-
trast to a conjunction, the satisfiability of formulæ inside a disjunction can be
established independently. The reduction in complexity – as opposed to generat-
ing all possible subformulæ, as remove-disjunct would do – is equal to that of
split-indep-conjunctions.

Expand-to-Base-Case

This transformation only works on conjunctive formulæ which contain an atom
whose predicate symbol belongs to a recursive predicate, replacing this atom by one
of the predicate’s base-case clauses. To determine whether a predicate is recursive
and what the base cases are, the following definition is used:

Definition 3.6 (Recursive Predicate, Base Case). Let ∆ be a GDL game descrip-
tion, and let G be the dependency graph for ∆. Then, predicate P is called recursive
iff there is a loop in G involving P .

A clause C of a recursive predicate P is called base case iff none of the atoms
occurring in C’s body is contained in a loop involving P .

Like remove-conjunct, expand-to-base-case only operates on state-dependent
atoms. It generates new features by unifying one of these atoms with the head of the
chosen base-case clause and replacing the atom with the body of the unified clause.

Expand-Predicate

Interestingly, Zenith contained no transformation that handled non-recursive aux-
iliary predicates. The reason was probably that the Othello domain specifica-
tion used by Fawcett contained no non-recursive auxiliary predicates, except state-
independent ones that shouldn’t be expanded (like neighbor).

For this reason, the additional transformation expand-predicate is introduced.
It operates similar to expand-to-base-case, except that all clauses of a non-
recursive state-dependent predicate are eligible for expansion.
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The justification for expand-predicate is that it allows other transformations to
access the predicate’s definition.

3.3.3 Other Transformations

Remove-Negation

Remove-negation only operates on features whose whole formula is a negated sub-
formula. It creates a new feature by removing the negation. Since Prolog uses the
negation-as-failure semantic, it is not possible to count the solutions of a negated
formula; thus, features with a negated formula are always binary. By removing the
negation, it becomes possible to count the number of solutions.

Regress-Formula

The transformation regress-formula performs goal regression on a feature’s for-
mula to create its pre-images. This is a very important transformation for the feature
generation process, since it’s the only one that takes the rules for legality of moves
and successor states into account; without it, all features would only be grounded
on the goal and terminal axioms.

Most STRIPS-style planners use goal regression extensively; however, regression
in STRIPS is easy to implement because STRIPS domain theories have to explicitly
supply a set of preconditions, a deletelist and an addlist for each domain operator,
and because only literals are allowed for these lists.

However, many complex games like Othello cannot be expressed in such a con-
strained formalism, while they can in GDL or the Prolog domain theories used in
Zenith. Unfortunately, this means that regression is more difficult to implement for
these languages. For this reason, Fawcett required that the domain theory explicitly
specifies the pre-images of any operator with respect to any state-dependent pred-
icate in the domain specification. Since this explicit regression information is not
available in GDL games either, an automatic procedure for computing pre-images
is needed.

An initial attempt to implement this transformation used the regression operator
described by Kostenko (2007). However, since this regression operator was intended
for the creation of end-game databases, it attempts to produce a state description
that is as concrete as possible, i. e., it expands all state-dependent predicates and
creates all possible instantiations of variables in the formula. However, this is not
desirable for feature generation, because a) the number of produced features is ex-
tremely large, and b) each of the produced features matches only a tiny number of
states and therefore generalizes badly.

Thus, a different algorithm was devised. The following definition lies at its core:
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Definition 3.7 (Potential Preimage). Let M = {(R1, A1), . . . , (Rn, An)} be a joint
move, and let there be a game rule next(F )⇐ B such that B does not imply true(F )
and B is compatible with

∃R1, . . . , Rn, A1, . . . , An. (does(R1, A1) ∧ · · · ∧ does(Rn, An)) .

Then, the formula

legal(R1, A1) ∧ · · · ∧ legal(Rn, An) ∧B′

is called a potential preimage of fluent F for joint move M , where B′ has
been obtained from B by replacing every occurrence of does〈R′, A′〉 by 〈R′, A′〉 =
〈R1, A1〉 ∨ · · · ∨ 〈R′, A′〉 = 〈Rn, An〉.

In the definition above, compatibility means logical consistency under the condi-
tion that each player can do only one action at a time. The requirement that B must
not imply true(F ) ensures that only non-frame axioms are counted. The intended
meaning of “potential preimage” is as follows: Let Z1 be a state in which a fluent
F does not hold, and let Z2 be the successor state of Z1 that was reached via joint
move M , and in which F holds. In that case, at least one of the potential preimages
of F for M holds in Z1.

Using this definition, all preimages in a given game description can be calculated
as follows:

1. Calculate all potential joint moves. This is done by collecting all actions for
each role from the legal axioms, and generating the cross product of all these
sets.

2. Collect all fluent symbols and their arity that appear in the next and init

axioms of the game description.

3. Using Definition 3.7, calculate all potential preimages for all joint moves and
all fluents.

Definition 3.7 also entails formulæ that are unsatisfiable in all reachable states.
For example, if M contains the elements 〈R′, A′〉 and 〈R′′, A′′〉, then there may be
no reachable state where both A′ is a legal move for role R′ and A′′ is a legal move
for role R′′. Eliminating the preimages for such spurious moves would in general
require to traverse the entire state space. But although solving the general case is
intractable, an important special case can be handled: games with non-simultaneous
moves. These are usually specified using “no-op” actions. Recognizing them would
enable the algorithm to reduce the number of generated preimages immensely: in
step 1 of the algorithm, only those joint moves could be included in which at most
one of the roles executes an action different from the no-op action.
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Definition 3.8 (No-op action). An action N is called a no-op action, iff

• it is a constant (i. e., has arity 0), and

• in every reachable state of the game, any legal joint move {(R1, A1), (R2, A2),
. . . , (Rn, An)} contains at most one Ai 6= N .

The requirement that the no-op action must be a constant was introduced only
to improve the robustness of the no-op detection function. There are a few games
in which the no-op action is represented by a function with arity ≥ 1, for example
move(nowhere); these cases are not covered by the current definition.

Since it is very hard to prove automatically whether a given action is a no-op action
or not, the current implementation uses simulation on a large number of games to
determine whether a game contains a no-op action. This is only an approximation,
but since this information is only used to restrict the number of features generated,
the advantage of generating exponentially less features outweighs the disadvantage
of potentially missing a preimage.

There is another optimization which reduces the number of generated regressions
even further. GDL games often contain fluents which change at every step. We will
call these always-changing fluents:

Definition 3.9 (Always-Changing Fluent (ACF)). A fluent F is called an always-
changing fluent, if for all reachable states Z the following holds:

Z ′ is a successor state of Z =⇒ ¬(F ∈ Z ∧ F ∈ Z ′)
Typical examples of ACFs are step counters (to ensure that a game terminates) or

control fluents that store which player’s turn it is in non-simultaneous games. These
shouldn’t be regressed, because they change on every step and are an extreme case
of an unstable fluent. Achieving these fluents will usually not improve game-play
performance.

For this reason, all ACFs are excluded in step 2 in the algorithm above. Testing
whether a fluent is an ACF is done by simulation, similar to the no-op actions.

An example of the generated preimages for the game of Pacman is shown in
Listing 3.1 on the following page.

So far, we have only calculated the preimages of fluents, not predicates. More
specificly, only state-dependent predicates would have to be regressed, since state-
independent predicates are invariant to regression.

One way to calculate the preimage of a state-dependent predicate would be as fol-
lows: first expand the predicate, i. e., replace the predicate call by its definition, and
then replace all predicate calls in the expanded formula, until only state-independent
predicate calls and fluents are left. However, this would increase the formula length
considerably, to the point where it may become intractable for very complex predi-
cates. Even for those features where this complete expansion is feasible, the resulting
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Listing 3.1 The fluent preimages calculated for the game of Pacman

1 preimage ( l o c a t i o n (P, X2 , Y2) ,
2 ( legal (pacman , move(D1) ) ,
3 legal ( bl inky , move(D2) ) ,
4 legal ( inky , move(D3) ) ,
5 movable (P) ,
6 true ( l o c a t i o n (P, X1 , Y1) ) ,
7 ( (P, move(D) ) = (pacman ,

move(D1) )
8 ; ( P, move(D) ) = ( bl inky ,

move(D2) )
9 ; ( P, move(D) ) = ( inky ,

move(D3) ) ) ,
10 n e x t c e l l (D, X1 , Y1 , X2 , Y2 ) ) ) .

11 preimage ( c o l l e c t e d (N2) ,
12 ( legal (pacman , move(D1) ) ,
13 legal ( bl inky , move( ) ) ,
14 legal ( inky , move( ) ) ,
15 true ( l o c a t i o n (pacman , X1 , Y1) ) ,
16 n e x t c e l l (D1 , X1 , Y1 , X2 , Y2) ,
17 true ( l o c a t i o n ( p e l l e t , X2 , Y2) ) ,
18 true ( c o l l e c t e d (N1) ) ,
19 succ (N1 , N2 ) ) ) .

long formula would not be very desirable, since the total number of features that
are generated from a given feature rises exponentially with its formula length.

Alternatively, predicates could be regressed by creating a new predicate, for ex-
ample called preimage-of-p for each predicate p. The definition of preimage-of-p
would be identical to that of p, except that all fluents occurring in this definition
would be substituted by their preimage, and all predicate calls q would be substi-
tuted by preimage-of-q. One clause would have to be added for each clause of
the original predicate and each possible joint move. The drawback to this approach
would be that lots of new predicates would have to be added to the game description,
thereby making the game description much more complex. Eventually, the number
of generated features would also increase dramatically: the regressed formula would
bear almost no resemblance to the original formula, thereby opening up a whole new
hierarchy of features generated by the other transformations. Another drawback of
this approach is that either a regressed formula could not be regressed again, or one
would have to introduce predicates like preimage-of-preimage-of-p.

Even if predicates were regressed that way, there would still be the problem of
recursive predicates. Due to the properties of GDL, recursive predicates are guaran-
teed to terminate at some point; however, completely unrolling a recursive predicate
is practically not feasible in most cases.

Therefore, the implementation of regress-formula used in this work only re-
gresses a single fluent in the feature’s formula, replacing the true statement contain-
ing the fluent by that fluent’s preimage. Contrary to the two approaches discussed
above, this only makes a small, local change to the feature’s formula and does not
cause an explosion in the number of generated features.

The disadvantage of the chosen approach is that now different parts of the formula
refer to different states. In order for the new formula to be a true partial preimage
of the old formula, one would have to add the atom state_update(Z1, M, Z2) to
the formula. Assume that the predicate state_update is defined elsewhere and is
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true iff Z2 is the successor state of Z1 for joint move M. The variable M would have to
be instantiated with the joint move through which the fluent is regressed. Then the
preimage could refer to the state Z1, whereas the non-regressed part of the formula
would have to refer to Z2.

Unfortunately, using the predicate state_update in feature formulæ (perhaps
even repeatedly in case of repeated regressions) would amount to a tree search; this
would make the generated features prohibitively expensive and defeat the purpose
of an evaluation function. The predicates used in a feature should refer exclusively
to the current state.

Therefore, the decision was made to let the regressed part of the formula refer to
the same state as the non-regressed part. Of course, this can lead to the generation
of spurious features, like the following from Pacman:

〈(true(location(pacman, X1, Y1)) ∧ nextcell(Dir1, X1, Y1, X2, Y2)

∧ legal(pacman, move(Dir2)) ∧ nextcell(Dir2, X2, Y2, X3, Y3)

∧ true(location(blinky, X3, Y3))), [Dir2]〉 .

The predicate call legal(pacman, move(Dir2)) actually refers to the current
state, where pacman is at cell (X1, Y1), whereas the predicate call nextcell in
which Dir2 occurs refers to a state where pacman is at cell (X2, Y2).

However, similar spurious features can be created by other transformations as well,
for example if remove-conjunct drops a critical fluent. Recognizing and eliminating
worthless features is the responsibility of the later stages of the algorithm. If this
cannot be done by the feature selection step, this is accomplished by the learning
algorithm, which will assign a near-zero weight to such features. Also note that
a correct preimage can always be generated by the algorithm2 by first expanding
all state-dependent predicates (using expand-predicate) and then regressing every
single fluent once through the same joint move.

3.3.4 Unimplemented Zenith Transformations

Split-Arith-Comp and Split-Arith-Calc

Zenith additionally contained two transformations called split-arith-comp and
split-arith-calc. They work on formulæ which contain arithmetic comparisons
and calculations. For example, the feature

〈(p(A) ∧ q(A) ∧ r(B) ∧ s(C, D) ∧ is(E, ((A + B) · C/D)) ∧ t(E)), []〉
would be split into the following three features:

2This assumes that the complexity of the formula is low enough that this sequence of transfor-
mations is allowed by the transformation restrictions, see Section 3.7.
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1. 〈(p(A) ∧ q(A)), [v(A)]〉

2. 〈(r(B)), [v(B)]〉

3. 〈(s(C, D)), [v(C), v(D)]〉

The predicate is is detected as a special predicate by the transformations indicating
that the variables A, B and C should be treated as numbers. To be able to do so,
Fawcett altered the definition of a feature’s evaluation: If the variable list contains
v(X) instead of just X, not the number of possible variable bindings of X is evaluated,
but instead X’s numerical value. If the variable list contains multiple elements, their
values are multiplied to give the feature evaluation.

These transformations, however, cannot be easily applied to GDL games, since
GDL lacks any definition of arithmetics. This is already partly solved in Fluxplayer,
since the domains of a predicate’s arguments are calculated, as well as certain prop-
erties of predicates like transitivity, reflexivity and symmetry. If there is a total
order between a set of domain elements, one could treat them as numbers. Then,
one could deduce if a predicate that only contains numerical arguments if it repre-
sents one of a set of given mathematical calculations and comparisons, such as +,
−, >, ≥, < or ≤.

In the present system, these two transformations have not been implemented,
mainly because of a lack of time. Also, there are two other reasons:

1. In the case of multiple numerical variables in a feature’s variable list, the values
are simply multiplied, as discussed above. This seems somewhat arbitrary
(e. g., in the third generated feature in the example above, C should probably
rather be divided by D instead of being multiplied).

2. There is no mention of how the feature evaluation for numerical features is
defined in the case that the feature’s formula can be satisfied more than once.
Presumably, Zenith uses the determinacy information that is required to be
stated for all predicates in Zenith’s game description to only generate formulæ
that cannot be resatisfied. If that is the case, this determinacy information
would have to be automatically inferred from the GDL game description, since
it does not contain this information.

Without these transformations, the system is not able to “understand” numbers
and decompose features based on numerical values. The calculations and compar-
isons as such will be treated like any other predicate. However, since the necessary
predicates are explicitly given in GDL, it can partly emulate this effect by applying
other transformations. For example, the goal description of the game Asteroids con-
tains the atom true(north-speed(0)). From this, the system can derive features
with formula true(north-speed(N)), with N ∈ {−3, . . . ,+3}.
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Still, including these transformations in future versions of this system would be
worthwile, since they allow to represent higher-level concepts in just one feature,
whereas the current implementation would need many features for the same task.

Variable-Specialize

Zenith also contained another transformation called variable-specialize. It tries
to find invariant variable values that always satisfy part of a feature’s formula, and
generate a new feature that specializes on these values. More specifically, if a formula
contains a single variable X, it is split into a prefix p that binds X, and a suffix q,
which must be a unary atom that uses X. Then, the set S = {X | p(X) =⇒ q(X)}
is computed. If this set is nonempty, variable-specialize creates a new feature
with the formula p(X) ∧ (X ∈ S). This set inclusion test is usually much cheaper
than the replaced subformula q.
Variable-specialize has deliberately not been implemented for this thesis. The

reason for this is that due to the lack of an appropriate theorem prover, Fawcett had
to use a test on a large number of states to approximate the invariance of variable
values. In order for this test to be sufficiently reliable, one would have to use quite a
large set of states, especially if the prefix p(X) is only true in a small fraction of all
states. The resulting time needed to compute this transformation seemed too high
to use it on the large number of features generated in the current implementation.

3.4 Simplifier

Whenever one of the feature transformations generates a new feature, it is passed to
the simplifier, which applies various syntactic simplifications to the feature’s formula.
The purpose of this is

1. to reduce the computation cost of the feature while maintaining logical equiv-
alence,

2. to remove redundancies in the feature’s formula, so the efficiency of the dupli-
cate removal phase (Section 3.6) is increased, and

3. to eliminate features with an insatisfiable or state-independent formula.

The simplifier works through a series of steps. If the formula is determined to be
insatisfiable at one point, it is rejected; otherwise, the simplified formula is returned.

Step 1: Expanding single-clause predicates
This step counts, for each atom A in the feature’s formula (except true), the number
of clauses that the atom would match. If there is no such clause at all, it is replaced
by false. If there is exactly one such clause H ⇐ B, A is replaced by (A = H)∧B.
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Step 2: Removing unifications with singleton variables
In this step, all singleton variables (i. e., variables that occur nowhere else in the
formula) are identified. All unifications with a singleton variable S, i. e. expressions
of the form S = T or T = S, are replaced by true. Likewise, all expressions of the
form S 6= T or T 6= S are replaced by false. Since this can produce new singleton
variables, this step is repeated until no more replacements take place.

Note: To distinguish between the boolean truth value true and the special GDL
predicate true, different fonts are used.

Step 3: Evaluating unifications in conjunctions
All unifications T1 = T2 in the outermost conjunction of the formula are evaluated
(possibly binding some variables). If both terms are not unifiable, the formula is
unsatisfiable. Otherwise, the unification is replaced by true.

Step 4: Removing true and false
This step iteratively

• replaces ¬false by true, ¬true by false;

• removes true if it appears as a conjunct;

• removes false if it appears as a disjunct;

• replaces conjunctions that contain false by false; and

• replaces disjunctions that contain true by true.

Step 5: Removing duplicate atoms
If a conjunction or disjunction contains the same term twice or more, all occurrences
except the first are removed from the formula.

Step 6: Checking for state-independency
If the resulting formula does not contain at least one state-dependent atom, the
feature is rejected.

3.5 Trim-Variables

One of the key problems of feature generation is how to limit the number of generated
features. The trim-variables heuristic described in this section is an extension to
the feature generation algorithm designed to reduce this number by eliminating
features that have the same output.

Since each of the initial features starts with a full variable list, feature generation
– as described so far – will generate, for each formula, one version of the feature
with every possible variable list. If the variable list has n variables, this means that
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2n versions of this feature will be generated. Many of these features have the same
evaluation on all states. The idea behind trim-variables is to reduce this set to
only those features which have a different evaluation.

The actual trim-variables heuristic is quite simple: Whenever a new feature
is generated, trim-variables tries to remove one of its variables from the variable
list. If the resulting feature still has the same evaluation, the procedure is repeated
until none of the remaining variables can be removed.

Unfortunately, proving that a variable can be safely removed without changing the
evaluation in any reachable state would in general require to traverse the whole state
space. Therefore, a heuristical approach has been chosen, in which the evaluations
of the two features, the old and the new one, are compared on a random set of states.
This set is generated before starting the feature generation algorithm by randomly
traversing the state space until n1 unique non-terminal states have been collected,
and then randomly picking n2 states from this set. In the experiments conducted for
this thesis, the parameters n1 = 3000 and n2 = 100 were used. The reason for this
particular implementation is that the larger set will be used by the feature selection
algorithm later on to compute some metrics on the features.

Of course, using observations – especially on such a small set – instead of formal
methods is error-prone, and only a last resort in absence of a better alternative.
However, there are some arguments why the impact of this inaccuracy is limited,
and the heuristic performed quite well in practical experiments:

1. The two compared features only differ in their variable list. This implies that
they match (i. e., have an evaluation 6= 0) in exactly the same states.

2. If a feature is too special or too general, i. e., it matches in very many or very
few states, it will be filtered out by feature selection.

These two points imply that for any feature that has a chance of being selected
later, some observations will probably be made, and they will be made on the same
states. If the two features have the same evaluations on all of these observations, the
differences will be minor, and it will probably be a good strategy to select only one
of them for the evaluation function, even if they should not be logically equivalent.

Another aspect is that there is a compromise between speed and accuracy of this
heuristic. The accuracy could be improved, at the expense of speed, by increasing
the number of tested states.

It is easy to verify that when using the trim-variables heuristic, feature genera-
tion actually generates at most as many features as when the extension is not used:
A feature is eliminated before it is added to the feature set and replaced by a version
of the same feature with a reduced variable list. This feature will also be generated
by the algorithm without the extension by application of the remove-variable

transformation.
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To ensure that any feature that is generated without the extension can also be
generated with it (except for those that have equal evaluations, of course), some
of the transformations have to be modified. These transformations need to restore
a full variable list to each generated feature. An example that demonstrates the
need for this is the following: Assume a feature has a formula that is unsatisfiable.
Trim-variables will reduce the variable list of this feature to the empty list, since
removing any variable does not change the feature’s evaluations. By application of
abstraction transformations like remove-conjunct, a feature can be generated that
has a satisfiable formula. Versions of this feature with a non-empty variable list
can only be produced if remove-conjunct restores the variable list of all features
it produces. The same reasoning applies to the two abstraction transformations
split-indep-conjunctions and remove-conjunct, which also generate features
that are more general than the original feature, and also possibly remove restrictions
on the variables. Remove-negation and regress-formula are neither specialization
nor abstraction transformations, so the features generated by them can also place
less restrictions on the variables. This is why the variable list has to be restored by
these two transformations, too. On the other hand, the specialization transforma-
tions split-disjunction, expand-to-base-case and expand-predicate restrict
the solutions to a feature’s formula, and so does remove-variable. This makes
restoring the variable list for these transformations unnecessary.

3.6 Duplicate Removal

In the final phase of the feature generation algorithm, each generated feature is
checked if it has been generated before. To do so, the DuplicateRemoval algo-
rithm calculates a key from the feature and uses this key for lookup in a hashtable
containing all previously generated features. If a match is found, the new feature is
discarded.

The key is computed in the following way:

1. Each variable in the feature’s formula F is instantiated with the constant #i,
if the variable is the ith variable occurring in the formula, from left to right.
This gives the instantiated formula Finst.

2. The elements of the formula are sorted according to the Prolog standard or-
dering of terms, recursing into conjunctions, disjunctions and negations.

3. The instantiated variable list ~v of the feature is sorted in the same way, giving
~vinst.

4. The key is the pair 〈Finst, ~vinst〉.
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This key is not unique, if two features contain the same subformulæ in a different
order. For example, the algorithm would compute the following mappings for two
semantically equivalent features:

〈(p(X), q(Y )), [X, Y ]〉 7−→ 〈(p(#1), q(#2)), [#1,#2]〉
〈(q(Y ), p(X)), [Y,X]〉 7−→ 〈(p(#2), q(#1)), [#1,#2]〉

The sorting step of the algorithm only helps in those cases where the variables of
the permuted subformulæ have already been bound, i. e., if these variables have pre-
viously occurred in the same order in both feature’s formulæ. In general, detecting
these homomorphisms would require to test all n! permutations of the n variables in
the formula, which is not worth the effort. In practice, features with such permuted
formulæ are very rare.

3.7 Restricting the Transformations

Originally, it was intended to use as few restrictions as possible during the feature
generation phase, and use the feature selection algorithm to narrow down the set of
features that will be passed to the learning algorithm. However, initial experiments
showed that the feature transformations as described in the previous sections still
produce an unmanageable number of features. Thus, the feature generation process
has to be restricted more aggressively.

After extensive experimentation on a wide selection of game descriptions, the
following restrictions were chosen:

1. All transformations: The maximum number of state-dependent atoms al-
lowed to occur in any formula is eight. If at any point a feature is generated
whose formula has more than eight state-dependent atoms, it is discarded.

2. remove-conjunct: This transformation is not applied to features that always
match, i. e., have an evaluation of 1 for all states. Since remove-conjunct is an
abstraction transformation, all features generated from such always-matching
features will also match all states and therefore will provide no information
about the quality of a state. The information whether a feature matches
all states or not is computed by sampling the same set of states used in
trim-variables (Section 3.5).

3. remove-variable: Like remove-conjunct, remove-variable will not be ap-
plied to features that match all states. Additionally, it will only be applied to
features whose variable list contains five variables or less; if a feature contains
more than five variables, all variables will be removed from the variable list.

Also, remove-variable checks all features that are generated from the same
feature whether some of them have the same evaluations on all states, using the
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same procedure as trim-variables, and only returns features with distinct
evaluations.

4. regress-formula: This transformation only operates on features with less
than four state-dependent atoms. Additionally, regress-formula cannot be
applied more than three times during the whole derivation of the feature. Like
remove-conjunct and remove-variable, it does not apply to features that
match all states.

5. expand-predicate: Expand-predicate only expands atoms that have a max-
imum of four matching clauses.

6. split-indep-conjunctions: If split-indep-conjunctions is applicable,
none of the other transformations will be executed on this feature.

The last restriction deserves a deeper explanation: Excluding all features whose
formula consists of independent conjunctions reduces the number of generated fea-
tures dramatically. This can be shown by a simple complexity analysis. Suppose
a feature’s formula consists of n independent subformulæ, and suppose that ap-
plying all transformations to each of these subformulæ would produce m new fea-
tures on average. Then, the total number of features created from the original
feature would be O(nm), whereas the number of features created after applying
split-indep-conjunctions would only be O(n ·m).

Apart from reducing the number of generated features, excluding features with
independent subformulæ has another positive effect: Most of these features capture
little additional information compared to the sum of the split subfeatures, but are
much more expensive. The reason is that in many cases, the independent subformulæ
have conceptually nothing to do with each other. If the variable list is non-empty, the
number of possible instantiations of all features multiply, which makes the resulting
feature very expensive. An example from the Chess variant Endgame for such a
feature is

〈(true(cell(C1, R1, b)) ∧ true(cell(C2, R2, wr)) ∧ clearrow(C3, C2, R2)

∧ true(cell(C3, R2, bk)) ∧ kingmove(C3, R2, C4, R4)), [C1, R1, C4, R4]〉 .

This feature’s formula consists of two independent parts: The first conjunct,
true(cell(C1, R1, b)), simply counts the number of blank spaces on the board,
obviously not a very good feature. The rest of the formula counts the number of
cells (C4, R4) that the black king could move to when it is checked via a row by the
white rook. Since the variable list contains all of C1, R1, C4 and R4, the maximum
value of this feature is 61 · 8 = 488. Splitting both parts into two separate features
improves both the accuracy and the cost of the second feature, while the first will
be discarded in a later step.
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So, prohibiting the application of other transformations to features where the
transformation split-indep-conjunctions is applicable has two positive effects:
reducing the number of generated features as well as eliminating many useless fea-
tures. However, these positive effects come at a price. One drawback is that in
some cases, the independent parts of a formula have interactions that are lost when
split apart. Since the linear function model that is used for learning cannot model
non-linear effects like conjunctions, information is lost, and the quality of the sub-
features combined can be lower than the original feature’s quality. Examples from
Tic-Tac-Toe are the features

〈(true(cell(R, 1, x)) ∧ true(cell(R, 2, x)) ∧ true(cell(R, 3, b))

∧ true(control(xplayer))), [R]〉

and

〈(true(cell(R, 1, x)) ∧ true(cell(R, 2, x)) ∧ true(cell(R, 3, b))

∧ true(control(oplayer))), [R]〉 .

Since the formulæ true(control(xplayer)) and true(control(oplayer)) con-
tain no variables at all, they are split apart from the rest of the formula. However,
the first feature means an immediate win for xplayer, while the second doesn’t;
experiments conducted during implementation have shown that the game-play per-
formance for Tic-Tac-Toe increases when all features that are similar to these two
are added to the used feature set.

Another game where applying split-indep-conjunctions exclusively causes
problems is Eight-Puzzle. One of the first features that are generated from the
goal description is

〈(true(cell(1, 1, 1)) ∧ true(cell(1, 2, 2)) ∧ true(cell(1, 3, 3))

∧ true(cell(2, 1, 4)) ∧ true(cell(2, 2, 5)) ∧ true(cell(2, 3, 6))

∧ true(cell(3, 1, 7)) ∧ true(cell(3, 2, 8)) ∧ true(cell(3, 3, b))), []〉 .

Again, since all conjuncts are ground, this feature is immediately split into all
nine parts, which prevents the creation of many good features.
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In this chapter, the developed feature selection method will be described. We will
begin by giving the motivation for the current method and formalizing the notion
of an abstraction graph (Section 4.1). The next section will present a sound and
efficient method to derive such an abstraction graph (Section 4.2). We will go
on to describe how this graph can be used to assign a level of abstraction to each
feature (Section 4.3) and conclude with a description of the resulting feature selection
method (Section 4.4).

4.1 Abstraction-Graph-Based Feature Selection

The task of feature selection is to decide which of the generated features are included
in the evaluation function. The main purpose of this is to limit the cost of the eval-
uation function. Even though some features can be excluded beforehand, based on
several eligibility criteria (see Section 4.4 for details), there is still an overwhelming
amount of features left. A method is needed to decide which of them should be
selected. To answer this question, the following observation is helpful: The more
special the features in an evaluation function get, the more “detailed” the overall
evaluation function becomes. Very abstract features can only capture the rough
overall objective of a game, while more special features can identify the fine points
of play.

This motivates the idea of abstraction-graph-based feature selection: Start with
the most abstract features, then add as many as possible of the more special ones
until the time limit set for the evaluation function is reached. The more time one
allows for the evaluation function, the more detailed it becomes. This approach
helps to avoid concentrating on overly detailed features and completely missing a
whole aspect of the game.

In order to arrive at a method that can quickly find the most abstract features, we
will first formalize the terms “abstract” and “special”, and then introduce the notion
of an abstraction graph.

Definition 4.1 (Abstraction and Specialization). A feature ϕa is called more ab-
stract than another feature ϕs, iff in all reachable states z, evalϕs(z) > 0 =⇒
evalϕa(z) > 0. Conversely, ϕs is called more special than ϕa.
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Definition 4.2 (Detail). A feature ϕ1 is called more detailed than another feature
ϕ2, iff in all reachable states z, evalϕ1(z) > 0 ≡ evalϕ2(z) > 0 and evalϕ1(z) ≥
evalϕ2(z).

These definitions allow to introduce the notion of an abstraction graph, which we
will later use to assign a level of abstraction to each feature.

Definition 4.3 (Abstraction Graph). A graph 〈V,E〉 is called an abstraction
graph, iff

• all elements of V are features, and

• 〈ϕ1, ϕ2〉 ∈ E =⇒ ϕ1 is either more abstract or less detailed than ϕ2.

4.2 Building the Abstraction Graph

Unfortunately, building a complete abstraction graph for a given set of features
would require to prove whether Definitions 4.1 and 4.2 hold for each pair of features
in the set. This would, in turn, generally require to traverse the entire state space.

However, there is an alternative: We know that the features in the set were
generated by the feature transformations from the previous chapter. By proving
some properties of these transformations, and observing which of the features were
generated by what transformation, it is possible to efficiently compute a partial
abstraction graph.

Lemma 4.1. Each feature that is generated by one of the abstraction transforma-
tions split-indep-conjunctions or remove-conjunct is more abstract than the
feature it was generated from.

Proof.

• split-indep-conjunctions: Let ϕa = 〈F a, ~va〉 be a feature that was gener-
ated from feature ϕs = 〈F s, ~vs〉. Then, F s must have the form F1 ∧ · · · ∧ Fn,
and ∃i. (Fi = F a). Therefore F s =⇒ F a.

• remove-conjunct: Let ϕa = 〈F a, ~va〉 be a feature that was generated by either
from feature ϕs = 〈F s, ~vs〉. Then, F s must be equivalent to F a ∧ F ′ for some
formula F ′, and F s =⇒ F a.

Lemma 4.2. Each feature that is generated by one of the specialization transforma-
tions split-disjunction, expand-predicate or expand-to-base-case is more
special than the feature it was generated from.

Proof.
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• split-disjunction: Let ϕs = 〈F s, ~vs〉 be a feature that was generated from
feature ϕa = 〈F a, ~va〉. Then, F a must have the form F1 ∨ · · · ∨ Fn, and
∃i. (Fi = F s). Therefore, F s =⇒ F a.

• expand-predicate: Let ϕs = 〈F s, ~vs〉 be a feature that was generated from
feature ϕa = 〈F a, ~va〉. Then, F a must have the form F1 ∧ · · · ∧ Fn, and F s

must have the form G1 ∧ · · · ∧Gn. Furthermore, there is an i (1 ≤ i ≤ n) with
Fi 6= Gi and Fj = Gj for all j 6= i. Fi must be an atom that matches a clause
H ⇐ B, and Gi must be (Fi = H ∧B). Therefore, F s =⇒ F a.

• expand-to-base-case: The proof is analogous to expand-predicate.

Lemma 4.3. Each feature that is generated by remove-variable is less detailed
than the feature it was generated from.

Proof. Let ϕa = 〈F a, ~va〉 be a feature that was generated from feature ϕs = 〈F s, ~vs〉.
Since remove-variable does not change the formula, F a = F s and evalϕa(z) >
0 ≡ evalϕs(z) > 0. Remove-variable removes exactly one variable from ~vs, so
evalϕs(z) ≥ evalϕa(z) for all reachable states z, since each binding for variables in
~vs corresponds to at least one variable binding in ~va.

Lemmas 4.1–4.3 allow to build an abstraction graph by observing the feature
generation process. To this end, the function AddToAbstractionGraph (Algo-
rithm 4.1 on the next page) is inserted immediately before the Duplicate Removal
phase from Section 3.6. It receives two arguments as input:

• a triple 〈ϕ, t, ϕ′〉, where ϕ′ is a new feature that has been generated from
feature ϕ by transformation t, and

• an abstraction graph 〈V,E〉, initially empty.

The output is an updated abstraction graph that will be used as input of the algo-
rithm for the next feature that it gets passed.

Lemma 4.4. Each graph G = 〈V,E〉 that was produced by Algorithm 4.1 has the
following properties:

1. G is an abstraction graph, and

2. G is a directed acyclic graph (DAG), i. e., if 〈ϕ, ϕ′〉 ∈ E, then there is no path
from ϕ′ to ϕ in G.

Proof.

1. G is an abstraction graph:

This follows directly from the fact that for each edge 〈ϕ, ϕ′〉 ∈ E, one of the
following holds:
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4.2 Building the Abstraction Graph

Algorithm 4.1 AddToAbstractionGraph

1: function AddToAbstractionGraph(〈ϕ, t, ϕ′〉, 〈V,E〉)
2: V ′ ← V ∪ {ϕ′}
3: if t ∈ {split-indep-conj., remove-conjunct, remove-variable} then
4: E ′ ← E ∪ {〈ϕ′, ϕ〉}
5: else if t ∈ {split-disj., expand-pred., expand-to-base-case} then
6: E ′ ← E ∪ {〈ϕ, ϕ′〉}
7: else
8: E ′ = E
9: end if

10: return 〈V ′, E ′〉
11: end function

a) ϕ was generated from ϕ′ by one of the abstraction transformations or the
detailing transformation, in which case either Lemma 4.1 or Lemma 4.3
holds, or

b) ϕ′ was generated from ϕ by a specialization transformation, in which case
Lemma 4.2 holds.

2. G is a DAG:

remove-variable: Since none of the other transformations changes the vari-
able list, and each feature produced by remove-variable has a shorter
variable list than the original one, there can be no cycles in G involving
features generated by remove-variable.

expand-predicate and expand-to-base-case: For any given feature formula,
expand-predicate and expand-to-base-case can only be applied a fi-
nite number of times (n). The reason for this is that expand-predicate
only expands non-recursive predicates, i. e., predicates which do not oc-
cur in a cycle in the dependency graph, and expand-to-base-case only
expands to base cases, i. e., clauses which do not occur in a cycle in the
dependency graph. This number n decreases with every application of
expand-predicate or expand-to-base. Since none of the other abstrac-
tion, detailing or specialization transformations adds new atoms to the
formula, n never increases. Therefore, there can be no cycle inG involving
edges produced by either expand-predicate or expand-to-base.

split-indep-conjunctions, remove-conjunct and split-disjunction: All three
remaining transformations produce formulæ that are shorter than the
original one. Therefore, there can be no cycle among features produced
by these three transformations.
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Algorithm 4.2 TransitiveReduction

1: function TransRed(〈V,E〉: DAG)
2: E ′ ← E
3: for all v ∈ V do
4: if ¬∃v′. (〈v′, v〉 ∈ E) then
5: e′ ← Dfs(〈V,E ′〉, v, ∅, ∅)
6: end if
7: end for
8: return 〈V,E ′〉
9: end function

10: function Dfs(〈V,E〉: DAG, v: node, f : coming from node, S: search path)
11: for all p with 〈p, v〉 ∈ E do
12: if p ∈ (S \ {f}) then
13: E ← E \ {〈p, v〉}
14: end if
15: end for
16: for all c with 〈v, c〉 ∈ E do
17: E ← Dfs(〈V,E〉, c, v, S ∪ {c})
18: end for
19: return E
20: end function

Optimization: Transitive Reduction
The performance of the following phases of feature selection can be slightly improved
by calculating the transitive reduction of the abstraction graph.

Definition 4.4 (Transitive Reduction). The transitive reduction of a directed graph
G = 〈V,E〉 is the directed graph G′ = 〈V,E ′〉 with the smallest number of edges such
that for every path between vertices in G, G′ has a path between those vertices.

Informally, transitive reduction can be thought of as the counterpart to transitive
closure. For DAGs, the transitive reduction is unique. Algorithm 4.2 shows the
implementation used for this thesis, based on depth-first search (DFS).

4.3 Assigning Abstraction Levels

The next task after computing the abstraction graph is to assign a level to each
node to indicate how “high up” in the abstraction graph that node is. This enables
selection of those features with the highest degrees of abstraction in the following
section.

40



4.3 Assigning Abstraction Levels

Algorithms for assigning levels to a DAG have previously been discussed in the
context of drawing a visual representation of a graph. To formalize the notion of
“level”, we will use a definition by Sugiyama, Tagawa, and Toda (1981):

Definition 4.5 (n-level Hierarchy). An n-level hierarchy (n ≥ 2) is defined as a
directed graph 〈V,E〉, where V is called a set of vertices and E a set of edges, which
satisfies the following conditions.

1. V is partitioned into n subsets, that is

V = V1 ∪ V2 ∪ · · · ∪ Vn (Vi ∩ Vj = ∅, i 6= j)

where Vi is called the ith level and n the length of the hierarchy.

2. Every edge e = 〈vi, vj〉 ∈ E, where vi ∈ Vi and vj ∈ Vj, satisfies i < j, and
each edge in E is unique.

The n-level hierarchy is denoted by G = 〈V,E, n〉.

So the task at hand is to convert the abstraction graph into an n-level hierarchy.
However, there are many possible hierarchies corresponding to a given graph. For
example, Figure 4.1 on page 43 shows two different hierarchies resulting from the
same graph. Figure 4.1a shows a simple way of converting a graph to a hierarchy:
The level assigned to each node is the longest distance from any source node (i. e.,
a node with no incoming edges; in the given graph, these are A and G). However,
the resulting hierarchy intuitively does not capture the desired notion of abstraction
very well, since E and H are assigned different levels, although both are only one
abstraction step away from F . Likewise, D and G are assigned vastly different
levels, although both are only two steps away from F . Figure 4.1b, on the other
hand, shows a hierarchy without the unnecessary long span edges 〈G,F 〉 and 〈G,H〉.

Such a hierarchy is computed by AssignLevels (Algorithm 4.3). First, all nodes
in V are sorted according to a topological ordering, which is done by the standard
graph algorithm TopSort. A topological ordering is a list S of all nodes in a DAG
〈V,E〉 with the property that, if there is an edge 〈v1, v2〉 ∈ E, then v1 occurs before
v2 in S.

AssignLevels uses this topological ordering to traverse the graph twice, once
forward and once backward. In the first (forward) pass, the level assigned to each
node is equal to its maximum distance from any source node. The purpose of
this pass is to determine the correct level of all sink nodes (a sink node is a node
without outgoing edges). In the second pass, the topological ordering is traversed
backwards. In this step, the level assigned to each node is the minimum level of
the node’s children. In the case of a sink node, the level computed in the first pass
remains unchanged.
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Algorithm 4.3 AssignLevels

1: function AssignLevels(〈V,E〉)
2: V1 ← ∅, V2 ← ∅, . . . , V|V | ← ∅
3: S ← TopSort(〈V,E〉)
4: for all v ∈ S do
5: P ← {p | 〈p, v〉 ∈ E}
6: if P = ∅ then
7: V1 ← V1 ∪ {v}
8: else
9: lp ← max(l), where P ∩ Vl 6= ∅

10: Vlp+1 ← Vlp+1 ∪ {v}
11: end if
12: end for
13:
14: V ′1 ← ∅, V ′2 ← ∅, . . . , V ′|V | ← ∅
15: R← Reverse(S)
16: for all v ∈ R do
17: C ← {c | 〈v, c〉 ∈ E}
18: if C = ∅ then
19: V ′l ← V ′l ∪ {v} iff {v} ∈ Vl

20: else
21: lc ← min(l), where C ∩ V ′l 6= ∅
22: Vlc−1 ← Vlc−1 ∪ {v}
23: end if
24: end for
25: n← index of last non-empty set in V ′1 , V

′
2 , . . . , V

′
|V |

26: return 〈(V ′1 ∪ V ′2 ∪ · · · ∪ V ′n), E, n〉
27: end function
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level 1 level 2 level 3 level 4 level 5 level 6

A B C D E

G H

F

(a) A hierarchy where levels are assigned by the longest distance
from any source node

level 1 level 2 level 3 level 4 level 5 level 6

A B C D E

G H

F

(b) A hierarchy resulting from the AssignLevels algorithm

Figure 4.1: Two hierarchies of the same graph

Lemma 4.5 (Correctness). Let G = 〈V,E〉 be a DAG, and AssignLevels(G) =
〈(V ′1 ∪ V ′2 ∪ · · · ∪ V ′n), E, n〉. Then,

1. V = (V ′1 ∪ V ′2 ∪ · · · ∪ V ′n), and

2. 〈(V ′1 ∪ V ′2 ∪ · · · ∪ V ′n), E, n〉 is a n-level hierarchy.

Proof. We will show both conditions in turn.

1. V = (V ′1 ∪ V ′2 ∪ · · · ∪ V ′n): This follows from the fact that, in the first pass of
the algorithm, each node is assigned to exactly one of the sets V1, V2, . . . , V|V |,
and in the second pass, each sink node carries over its level from these sets,
and each non-sink node is assigned a new level, in exactly one of the sets
V ′1 , V

′
2 , . . . , V

′
|V |. Also, since the level assigned to each sink node in the first

pass is equal to the longest distance from any source node, all indices must be
in the range 1 . . . |V |.

2. 〈(V ′1 ∪ V ′2 ∪ · · · ∪ V ′n), E, n〉 is a n-level hierarchy:

a) V ′i ∩ V ′j = ∅, i 6= j: This follows from the fact that exactly one level is
assigned to each node, as stated above.

b) Every edge e = 〈vi, vj〉 ∈ E, where vi ∈ V ′i and vj ∈ V ′j , satisfies i < j:
Since the nodes are traversed in reverse topological ordering in the second
pass, the level of vj is calculated before vi. The level assigned to vi is
smaller than the minimum of all its children, including vj, so i < j.
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c) Each edge in E is unique: This follows from the fact that E is a set, and
the edges are unlabeled.

4.4 Final Feature Selection

During the final feature selection phase, features are selected for inclusion in the
evaluation function. Starting with the most abstract level of the abstraction graph,
features are added to the evaluation function until a given time limit for the evalu-
ation function is reached. Before a feature is added, a number of precursory checks
is performed to exclude features that will probably not improve the quality of the
evaluation function.

Features are excluded based on the following principles:

1. Features with a negated formula are redundant: they provide no new informa-
tion over the non-negated version.

2. Features that have independent conjuncts (i. e., can be processed by the trans-
formation split-indep-conjunction) are usually much more expensive and
less expressive than the separated single conjuncts (see Section 3.7 for a de-
tailed discussion).

3. Features that are too special (i. e., match in no or almost no states) are costly
to compute relative to their utility, since they have to be evaluated for each
state, but only match in few of them. Also, they do not generalize well to
other states, which introduces the risk of overfitting by allowing the evaluation
function too many degrees of freedom.

4. Features that are too general (i. e., match in all or almost all states) are the
converse case: They only provide information about the few states in which
they do not match. Good features should be general enough to avoid overfit-
ting, while being special enough to separate good from bad states.

5. Features that are too expensive take up a disproportionate amount of the
overall computation time for the information they provide.

While criteria 1 and 2 can easily be computed based on syntactical analysis of the
feature, criteria 3–5 require observation of the feature’s evaluations and the needed
computation time on a set of states. The procedure is similar to the one described
in Section 3.5 (Trim-Variables): The feature’s evaluations are observed on a set of
non-terminal states that were collected using random game play, but this time using
a much larger set of states (in the conducted experiments, a set of 3000 states was
used). Afterwards, the matching ratio is computed as the number of states in which
the feature’s evaluation was greater than 0 divided by the total number of observed
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states. If the matching ratio is below a given threshold (currently 1 %), it is rejected
because it is too special. Likewise, if the matching ratio is above another threshold
(currently 99 %), it is rejected as being too general. The total time it took to compute
all evaluations, divided by the total number of states, gives the evaluation time per
state; if it exceeds a given percentage of the allowed total evaluation function time
(currently 3 %), it is rejected as being too expensive. Another value that is observed
and stored here is the maximum value of the feature. This will later be used to
normalize the feature’s evaluation.

Since the abstraction graph allows the selection of the most abstract features
before performing such tests, only a small percentage of all generated features has
to be tested. This allows the usage of such a large set of states. Additionally, the
time taken by this procedure can be sped up considerably by using a sequential
statistical test procedure devised by Buro (1999). It is based on the observation
that, if for example among the first 1000 tested states, the feature matches only
a single one, it is very unlikely that the total matching ratio exceeds 1 %. The
proposed heuristic uses the fact that the expected number of matched states in a
sequence of length d is dq, where q is the probability of a match, and the standard
deviation is

√
dq(1− q). The heuristic allows to set a confidence level t. When the

statistical probability that the feature is too special or too general is higher than
t, the function aborts early. In the conducted experiments, t was set to 95 %. The
resulting algorithm used to test whether a feature is eligible for inclusion in the
evaluation function is shown in Algorithm 4.4 on the next page.

This algorithm can now be used to construct the final FeatureSelection algo-
rithm (Algorithm 4.5 on page 47). It simply scans through the abstraction hierarchy,
level by level, and checks each feature in the level if it is eligible for inclusion, until
the total evaluation function time limit is reached. The final abstraction graph is
passed to AssignLevels again. This has the effect that, if parent nodes of a se-
lected feature have not been selected, the feature will be assigned a lower level than
before, thereby again removing unnecessary long span edges and “compacting” the
abstraction hierarchy near the top.

The final resulting abstraction hierarchy is shown in Figure 4.2 on page 481. One
can clearly see that there are some features whose parents have been completely
removed in the top portion of the figure, and that these features have been assigned
to level 1. The graph has been colored by the matching ratio, which demonstrates
the effect that the most abstract features are collected in the lower levels.

1The abstraction graphs that are computed for most games, including Tic-Tac-Toe, are too large
to fit on one page and still be readable. Therefore, the graphs for all tested games are available
in PDF format on the accompanying CD.
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Algorithm 4.4 FeatureEligible

1: function FeatureEligible(ϕ: feature)
2: Constants: S: set of states, t: confidence level, l: time limit per state,

qmin, qmax: min/max matching ratio
3: if ϕ = 〈(¬F ), ~v〉 then
4: return false . negated formula
5: else if Split-Indep-Conjunctions(ϕ) 6= ∅ then
6: return false . formula has independent conjuncts
7: end if
8: lmax ← l · |S|
9: u← 0

10: d← 0
11: for all z ∈ S do
12: d← d+ 1
13: if evalϕ(z) > 0 then
14: u← u+ 1
15: end if
16: if u < dqmin − t

√
dqmin(1− qmin) then

17: return false . Prob(too special) > t
18: else if u ≥ dqmax + t

√
dqmax(1− qmax) then

19: return false . Prob(too general) > t
20: else if CpuTime() > lmax then
21: return false . evaluation time exceeded
22: end if
23: end for
24: return true
25: end function
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Algorithm 4.5 FeatureSelection

1: function FeatureSelection(〈V1∪V2∪ · · ·∪Vn, E, n〉: abstraction hierarchy,
tmax: max evaluation function time)

2: V ′ ← ∅
3: t← 0
4: for all V ∈ {V1, V2, . . . , Vn} do
5: C ← ∅
6: for all ϕ ∈ V do
7: if FeatureEligible(ϕ) then
8: C ← C ∪ {ϕ}
9: t← t+ EvalTime(ϕ)

10: end if
11: end for
12: if t < tmax then
13: V ′ ← V ′ ∪ C
14: else
15: break
16: end if
17: end for
18: E ′ ← {〈v1, v2〉 | (〈v1, v2〉 ∈ E) ∧ (v1 ∈ V ′ ∨ v2 ∈ V ′)}
19: return AssignLevels(〈V ′, E ′〉)
20: end function
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f240 = true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.722, t:0.01

f476 = true(cell(V1, 1, b))  --  cv:[], max:1.0, match:0.808, t:0.007

f373 = true(cell(3, 3, b))  --  cv:[], max:1.0, match:0.437, t:0.01

f215 = true(cell(V1, 1, x))  --  cv:[], max:1.0, match:0.714, t:0.01

f134 = true(cell(V1, 2, o))  --  cv:[], max:1.0, match:0.618, t:0.01

f173 = true(cell(1, V1, o))  --  cv:[], max:1.0, match:0.626, t:0.01

f470 = true(cell(V1, 2, b))  --  cv:[], max:1.0, match:0.809, t:0.01

f102 = true(control(xplayer))  --  cv:[], max:1.0, match:0.507, t:0.007

f500 = true(cell(1, V1, b))  --  cv:[], max:1.0, match:0.803, t:0.007

f205 = true(cell(V1, 2, x))  --  cv:[], max:1.0, match:0.727, t:0.02

f132 = true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.633, t:0.01

f248 = true(cell(1, V1, x))  --  cv:[], max:1.0, match:0.707, t:0.01

f375 = true(cell(1, 3, b))  --  cv:[], max:1.0, match:0.429, t:0.01

f469 = true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.803, t:0.01

f203 = true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.726, t:0.01

f167 = true(cell(2, V1, o))  --  cv:[], max:1.0, match:0.638, t:0.01

f58 = true(control(oplayer))  --  cv:[], max:1.0, match:0.493, t:0.007

f371 = true(cell(2, 2, b))  --  cv:[], max:1.0, match:0.444, t:0.01

f494 = true(cell(2, V1, b))  --  cv:[], max:1.0, match:0.8, t:0.01

f242 = true(cell(2, V1, x))  --  cv:[], max:1.0, match:0.737, t:0.01

constant_feature = true  --  cv:[], max:1.0, match:1.0, t:0.0

f377 = true(cell(3, 1, b))  --  cv:[], max:1.0, match:0.422, t:0.007

f165 = true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.646, t:0.007

f140 = true(cell(V1, 1, o))  --  cv:[], max:1.0, match:0.633, t:0.01

f493 = true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.812, t:0.007

f369 = true(cell(1, 1, b))  --  cv:[], max:1.0, match:0.45, t:0.01

f126 = true(cell(1, 1, x))  --  cv:[], max:1.0, match:0.285, t:0.01

f128 = true(cell(3, 3, x))  --  cv:[], max:1.0, match:0.3, t:0.01

f85 = true(cell(1, 3, o))  --  cv:[], max:1.0, match:0.258, t:0.01

f129 = true(cell(1, 3, x))  --  cv:[], max:1.0, match:0.313, t:0.007

f83 = true(cell(2, 2, o))  --  cv:[], max:1.0, match:0.258, t:0.01

f127 = true(cell(2, 2, x))  --  cv:[], max:1.0, match:0.298, t:0.007

f87 = true(cell(3, 1, o))  --  cv:[], max:1.0, match:0.279, t:0.01

f131 = true(cell(3, 1, x))  --  cv:[], max:1.0, match:0.298, t:0.01

f82 = true(cell(1, 1, o))  --  cv:[], max:1.0, match:0.266, t:0.01

f84 = true(cell(3, 3, o))  --  cv:[], max:1.0, match:0.263, t:0.007

f107 = true(cell(3, V1, x))  --  cv:[V1], max:2.0, match:0.722, t:0.01

f297 = true(cell(V1, 1, b))  --  cv:[V1], max:3.0, match:0.808, t:0.013

f94 = true(cell(V1, 1, x))  --  cv:[V1], max:2.0, match:0.714, t:0.01

f47 = true(cell(V1, 2, o))  --  cv:[V1], max:2.0, match:0.618, t:0.01

f69 = true(cell(1, V1, o))  --  cv:[V1], max:2.0, match:0.626, t:0.01

f287 = true(cell(V1, 2, b))  --  cv:[V1], max:3.0, match:0.809, t:0.01

f343 = true(cell(1, V1, b))  --  cv:[V1], max:3.0, match:0.803, t:0.027

f89 = true(cell(V1, 2, x))  --  cv:[V1], max:2.0, match:0.727, t:0.013

f46 = true(cell(V1, 3, o))  --  cv:[V1], max:2.0, match:0.633, t:0.01

f112 = true(cell(1, V1, x))  --  cv:[V1], max:2.0, match:0.707, t:0.013

f284 = true(cell(V1, 3, b))  --  cv:[V1], max:3.0, match:0.803, t:0.01

f88 = true(cell(V1, 3, x))  --  cv:[V1], max:2.0, match:0.726, t:0.013

f65 = true(cell(2, V1, o))  --  cv:[V1], max:2.0, match:0.638, t:0.01

f333 = true(cell(2, V1, b))  --  cv:[V1], max:3.0, match:0.8, t:0.01

f108 = true(cell(2, V1, x))  --  cv:[V1], max:2.0, match:0.737, t:0.01

f64 = true(cell(3, V1, o))  --  cv:[V1], max:2.0, match:0.646, t:0.01

f330 = true(cell(3, V1, b))  --  cv:[V1], max:3.0, match:0.812, t:0.007

f51 = true(cell(V1, 1, o))  --  cv:[V1], max:2.0, match:0.633, t:0.007

f408 = true(cell(V1, 1, x)), true(cell(V1, 2, b))  --  cv:[], max:1.0, match:0.369, t:0.013

f290 = true(cell(V1, 2, b)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.305, t:0.017

f599 = true(cell(V1, 1, b)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.459, t:0.017

f219 = true(cell(V1, 1, x)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.363, t:0.013

f138 = true(cell(V1, 2, o)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.29, t:0.013

f439 = true(cell(1, V1, b)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.385, t:0.013

f397 = true(cell(V1, 1, b)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.364, t:0.013

f596 = true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.456, t:0.013

f386 = true(cell(V1, 2, b)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.363, t:0.017

f613 = true(cell(1, V1, b)), true(cell(2, V1, b))  --  cv:[], max:1.0, match:0.455, t:0.013

f451 = true(cell(1, V1, x)), true(cell(2, V1, b))  --  cv:[], max:1.0, match:0.361, t:0.013

f447 = true(cell(1, V1, b)), true(cell(2, V1, x))  --  cv:[], max:1.0, match:0.387, t:0.013

f117 = true(cell(1, V1, x)), true(cell(2, V1, x))  --  cv:[], max:1.0, match:0.217, t:0.013

f428 = true(cell(2, V1, b)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.361, t:0.023

f390 = true(cell(V1, 2, x)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.372, t:0.013

f90 = true(cell(V1, 2, x)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.224, t:0.023

f353 = true(cell(1, V1, b)), true(cell(2, V1, o))  --  cv:[], max:1.0, match:0.3, t:0.017

f170 = true(cell(2, V1, b)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.292, t:0.013

f602 = true(cell(V1, 1, b)), true(cell(V1, 2, b))  --  cv:[], max:1.0, match:0.458, t:0.013

f432 = true(cell(2, V1, x)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.373, t:0.017

f349 = true(cell(1, V1, o)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.305, t:0.01

f610 = true(cell(1, V1, b)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.451, t:0.013

f339 = true(cell(2, V1, o)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.291, t:0.013

f607 = true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.461, t:0.013

f443 = true(cell(1, V1, x)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.361, t:0.013

f143 = true(cell(V1, 1, b)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.301, t:0.013

f404 = true(cell(V1, 1, b)), true(cell(V1, 2, x))  --  cv:[], max:1.0, match:0.363, t:0.013

f148 = true(cell(V1, 1, o)), true(cell(V1, 2, b))  --  cv:[], max:1.0, match:0.292, t:0.013

f18 = true(cell(V1, 2, o)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.149, t:0.017

f181 = true(cell(1, V1, o)), true(cell(2, V1, b))  --  cv:[], max:1.0, match:0.293, t:0.013

f147 = true(cell(V1, 1, b)), true(cell(V1, 2, o))  --  cv:[], max:1.0, match:0.304, t:0.017

f26 = true(cell(1, V1, o)), true(cell(2, V1, o))  --  cv:[], max:1.0, match:0.149, t:0.013

f25 = true(cell(1, V1, o)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.144, t:0.013

f176 = true(cell(1, V1, b)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.308, t:0.013

f24 = true(cell(2, V1, o)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.158, t:0.013

f144 = true(cell(V1, 1, o)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.305, t:0.023

f20 = true(cell(V1, 1, o)), true(cell(V1, 2, o))  --  cv:[], max:1.0, match:0.128, t:0.013

f19 = true(cell(V1, 1, o)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.147, t:0.013

f34 = true(cell(V1, 1, x)), true(cell(V1, 2, x))  --  cv:[], max:1.0, match:0.203, t:0.013

f223 = true(cell(V1, 1, x)), true(cell(V1, 2, b))  --  cv:[V1], max:2.0, match:0.369, t:0.013

f477 = true(cell(V1, 1, b)), true(cell(V1, 3, b))  --  cv:[V1], max:3.0, match:0.459, t:0.013

f137 = true(cell(V1, 2, b)), true(cell(V1, 3, o))  --  cv:[V1], max:2.0, match:0.305, t:0.017

f217 = true(cell(V1, 1, b)), true(cell(V1, 3, x))  --  cv:[V1], max:2.0, match:0.364, t:0.017

f33 = true(cell(V1, 1, x)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.215, t:0.013

f250 = true(cell(1, V1, b)), true(cell(3, V1, x))  --  cv:[V1], max:2.0, match:0.385, t:0.013

f236 = true(cell(V1, 1, x)), true(cell(V1, 3, b))  --  cv:[V1], max:2.0, match:0.363, t:0.013

f160 = true(cell(V1, 2, o)), true(cell(V1, 3, b))  --  cv:[V1], max:2.0, match:0.29, t:0.013

f474 = true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[V1], max:3.0, match:0.456, t:0.013

f211 = true(cell(V1, 2, b)), true(cell(V1, 3, x))  --  cv:[V1], max:2.0, match:0.363, t:0.013

f509 = true(cell(1, V1, b)), true(cell(2, V1, b))  --  cv:[V1], max:3.0, match:0.455, t:0.013

f260 = true(cell(1, V1, x)), true(cell(2, V1, b))  --  cv:[V1], max:2.0, match:0.361, t:0.013

f38 = true(cell(2, V1, x)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.226, t:0.013

f258 = true(cell(1, V1, b)), true(cell(2, V1, x))  --  cv:[V1], max:2.0, match:0.387, t:0.013

f40 = true(cell(1, V1, x)), true(cell(2, V1, x))  --  cv:[V1], max:2.0, match:0.217, t:0.013

f39 = true(cell(1, V1, x)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.198, t:0.017

f244 = true(cell(2, V1, b)), true(cell(3, V1, x))  --  cv:[V1], max:2.0, match:0.361, t:0.013

f213 = true(cell(V1, 2, x)), true(cell(V1, 3, b))  --  cv:[V1], max:2.0, match:0.372, t:0.013

f32 = true(cell(V1, 2, x)), true(cell(V1, 3, x))  --  cv:[V1], max:2.0, match:0.224, t:0.01

f188 = true(cell(2, V1, b)), true(cell(3, V1, o))  --  cv:[V1], max:2.0, match:0.292, t:0.013

f246 = true(cell(2, V1, x)), true(cell(3, V1, b))  --  cv:[V1], max:2.0, match:0.373, t:0.013

f177 = true(cell(1, V1, o)), true(cell(3, V1, b))  --  cv:[V1], max:2.0, match:0.305, t:0.027

f501 = true(cell(1, V1, b)), true(cell(3, V1, b))  --  cv:[V1], max:3.0, match:0.451, t:0.013

f171 = true(cell(2, V1, o)), true(cell(3, V1, b))  --  cv:[V1], max:2.0, match:0.291, t:0.013

f495 = true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[V1], max:3.0, match:0.461, t:0.013

f252 = true(cell(1, V1, x)), true(cell(3, V1, b))  --  cv:[V1], max:2.0, match:0.361, t:0.013

f151 = true(cell(V1, 1, b)), true(cell(V1, 3, o))  --  cv:[V1], max:2.0, match:0.301, t:0.013

f221 = true(cell(V1, 1, b)), true(cell(V1, 2, x))  --  cv:[V1], max:2.0, match:0.363, t:0.017

f180 = true(cell(1, V1, b)), true(cell(2, V1, o))  --  cv:[V1], max:2.0, match:0.3, t:0.013

f157 = true(cell(V1, 1, o)), true(cell(V1, 2, b))  --  cv:[V1], max:2.0, match:0.292, t:0.01

f479 = true(cell(V1, 1, b)), true(cell(V1, 2, b))  --  cv:[V1], max:3.0, match:0.458, t:0.017

f414 = true(cell(V1, 1, x)), true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.163, t:0.017

f103 = true(cell(V1, 1, x)), true(cell(V1, 2, b)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.111, t:0.017

f120 = true(cell(1, V1, b)), true(cell(2, V1, x)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.124, t:0.017

f316 = true(cell(V1, 1, b)), true(cell(V1, 2, o)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.131, t:0.033

f453 = true(cell(1, V1, b)), true(cell(2, V1, b)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.169, t:0.02

f122 = true(cell(1, V1, x)), true(cell(2, V1, b)), true(cell(3, V1, x))  --  cv:[], max:1.0, match:0.106, t:0.017

f105 = true(cell(V1, 1, x)), true(cell(V1, 2, x)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.113, t:0.013

f78 = true(cell(1, V1, o)), true(cell(2, V1, b)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.066, t:0.017

f358 = true(cell(1, V1, b)), true(cell(2, V1, b)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.127, t:0.017

f455 = true(cell(1, V1, b)), true(cell(2, V1, x)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.171, t:0.017

f80 = true(cell(1, V1, o)), true(cell(2, V1, o)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.064, t:0.027

f366 = true(cell(1, V1, o)), true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.13, t:0.017

f647 = true(cell(1, V1, b)), true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.229, t:0.017

f457 = true(cell(1, V1, x)), true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.172, t:0.017

f124 = true(cell(1, V1, x)), true(cell(2, V1, x)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.104, t:0.027

f59 = true(cell(V1, 1, b)), true(cell(V1, 2, o)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.063, t:0.017

f552 = true(cell(V1, 1, b)), true(cell(V1, 2, x)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.165, t:0.017

f101 = true(cell(V1, 1, b)), true(cell(V1, 2, x)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.103, t:0.02

f77 = true(cell(1, V1, b)), true(cell(2, V1, o)), true(cell(3, V1, o))  --  cv:[], max:1.0, match:0.072, t:0.027

f360 = true(cell(1, V1, b)), true(cell(2, V1, o)), true(cell(3, V1, b))  --  cv:[], max:1.0, match:0.124, t:0.017

f62 = true(cell(V1, 1, o)), true(cell(V1, 2, o)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.06, t:0.017

f60 = true(cell(V1, 1, o)), true(cell(V1, 2, b)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.057, t:0.017

f322 = true(cell(V1, 1, o)), true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.135, t:0.017

f314 = true(cell(V1, 1, b)), true(cell(V1, 2, b)), true(cell(V1, 3, o))  --  cv:[], max:1.0, match:0.135, t:0.017

f620 = true(cell(V1, 1, b)), true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[], max:1.0, match:0.231, t:0.02

f547 = true(cell(V1, 1, b)), true(cell(V1, 2, b)), true(cell(V1, 3, x))  --  cv:[], max:1.0, match:0.164, t:0.02

f614 = true(cell(1, V1, b)), true(cell(2, V1, b)), true(cell(3, V1, b))  --  cv:[V1], max:3.0, match:0.229, t:0.017

f412 = true(cell(V1, 1, b)), true(cell(V1, 2, x)), true(cell(V1, 3, b))  --  cv:[V1], max:2.0, match:0.165, t:0.013

f603 = true(cell(V1, 1, b)), true(cell(V1, 2, b)), true(cell(V1, 3, b))  --  cv:[V1], max:3.0, match:0.231, t:0.013

f410 = true(cell(V1, 1, b)), true(cell(V1, 2, b)), true(cell(V1, 3, x))  --  cv:[V1], max:2.0, match:0.164, t:0.017

Figure 4.2: Abstraction graph for Tic-Tac-Toe. Features are colored by their match-
ing ratio (darker shades mean higher ratio). All features that have the same level
in the abstraction hierarchy are placed on the same horizontal rank.
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5 Evaluation Function Learning

The purpose of the Evaluation Function Learning algorithm is to assign weights to
the features that were selected in the previous chapter. The chosen learning method
is TD(λ) reinforcement learning (Sutton and Barto, 1998).

The following four subsections are organized in a top-down order: First, we will
consider the learning framework in which the training matches are run (Section 5.1).
Next, the action selection strategies for both the learner and its opponents will be
discussed (Section 5.2). Afterwards, the functional model for combining the features
into an evaluation function will be explained (Section 5.3). The chapter concludes
with a description of the specific TD weight update implementation (Section 5.4).

5.1 Learning Framework

The system learns the weights for each role of the game separately from playing a
series of training matches (Algorithm 5.1 on the following page). In each state of the
game, actions are selected for each role following an epsilon-greedy strategy by the
function SelectAction1 (Section 5.2). If the learner’s action was selected greedily
(i. e., the best action according to the current evaluation function has been selected),
the weights are updated using the function TdUpdate (Section 5.4). The variable
~e stores the eligibility traces, which contain information on how often a feature has
matched in the previous states and are used by the TdUpdate algorithm. These
are reset to ~0 whenever a random action is selected.

The weight vector ~w is initialized randomly. The reason for this is that there exists
no solution if all weights are initialized to the same value (for example 0) and the
solution requires unequal weights, because the error is propagated backwards with
a proportion of the weights. The random initialization serves to break symmetries.

5.2 Action Selection

The action selection for the learner’s role during the test games (Algorithm 5.2 on
page 51) follows an epsilon-greedy strategy. This means that with a small probability
ε, a random action will be selected using the function SelectRandomAction to
ensure proper exploration of the state space.

1The function calls printed in verbatim are functions that refer to the game description.
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Chapter 5 Evaluation Function Learning

Algorithm 5.1 RunLearningMatches

1: function RunLearningMatches(n: number of matches, r: learner role)
2: for i = 1 to n do
3: ~e← ~0 . eligibility traces
4: ~w ← RandomVector([−0.005,+0.005])
5: z ← init()
6: while ¬terminal(z) do
7: 〈~m, g〉 ← SelectActions(r, z)
8: z′ ← next(~m, z)
9: if g = true then . greedy action selected

10: 〈~e, ~w〉 ← TdUpdate(r,~e, ~w, z, z′)
11: else . random action selected
12: ~e← ~0
13: end if
14: z ← z′

15: end while
16: end for
17: end function

All (1 − ε) other actions are selected greedily by the function SelectGreedy-
Action. It performs a one-ply search, evaluating all successor states of the current
state using the current evaluation function, and returning the action that leads to
the highest-valued successor state. In the case of simultaneous games, Select-
GreedyAction picks a random action for all opponent roles before performing the
one-ply search. Several alternatives to this have been considered:

1. Instead of assuming some random action for the opponents, one could directly
use their evaluation function (as used by SelectOpponentAction below)
to compute the action that they will select. However, this means that the
learner is able to predict the opponents’ actions perfectly, which is unrealistic
in real game play and will probably cause the learner to overspecialize on the
opponents used during training.

2. One could use the negated current evaluation function to predict the oppo-
nent’s moves, and then compute a Nash equilibrium for all player’s moves.
The drawback would be that changing the weights in the evaluation function
would not only change the learner’s actions, but also its prediction of the oppo-
nents’ actions. This would mean that the gradient of the evaluation function’s
weights is not clearly defined any more, which can have unpredictable effects
on the learning task.

3. One could calculate the successor states for all joint moves and then average
the expected rewards for each available action. While this method of action
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5.2 Action Selection

Algorithm 5.2 SelectActions

1: function SelectActions(r: learner role, z: current state)
2: Constants: ε: exploration rate
3: 〈r1, r2, . . . , rn〉 ← roles()
4: for i = 1 to n do
5: if ri = r then
6: if Random([0 . . . 1]) < ε then
7: g ← false
8: ai ← SelectRandomAction(ri, z)
9: else

10: g ← true
11: ai ← SelectGreedyAction(ri, z)
12: end if
13: else
14: ai ← SelectOpponentAction(ri, z)
15: end if
16: end for
17: return 〈〈a1, a2, . . . , an〉, g〉
18: end function

selection would probably be more accurate than the one that was chosen, it
would require to evaluate n1 · n2 · . . . · nr successors per selected action, where
the ni represent the number of available actions for each role, whereas the
current method only has to evaluate nl successors, where nl is the number
of actions available to the learner. Since this would slow the training games
down considerably, the choice was made to use the current, less precise action
selection method and make up for the imprecision by running a much greater
number of training games. If the number of training games is large enough,
the current method should approximate the averaging over actions on each
step.

The actions of all roles that are not controlled by the learner are selected by the
function SelectOpponentAction. Here, actions are selected greedily with ran-
dom tie-breaking, using the Fluxplayer’s current fuzzy-logic-based heuristic (Schiffel
and Thielscher, 2007a,b). This ensures that the training games are played against
a realistic opponent and speeds up the learning process compared to, for example,
learning from self-play.
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Chapter 5 Evaluation Function Learning

5.3 Evaluation Function Model

The functional model that is used for the evaluation function is the same that was
used in Buro’s GLEM system: a linear combination of all features with a sigmoid
squashing function.

Before the features’ evaluations enter the evaluation function, they are normalized.
The normalized evaluation of feature ϕi in state z is defined as

evalnϕi
(z) =

evalϕi
(z)

maxϕi

, (5.1)

using the maximum value of the feature (maxϕi
) that was computed in Section 4.4.

This normalizing is not strictly necessary, since the same effect can be achieved by
adjusting the feature weights, but it makes analysis and interpretation of the feature
weights easier.

Using these normalized feature evaluations for the selected features ϕ1, ϕ2, . . . , ϕn,
the evaluation function V (z) is defined as

V (z) = g

(
n∑

i=1

wi · evalnϕi
(z)

)
, (5.2)

where w1, w2, . . . , wn ∈ R are the feature weights, and g : R → R is an increasing
and differentiable link function.

This functional model, known in statistics as the generalized linear model, is
identical to the standard linear model except for the link function g(x). Its purpose
is to restrict the output of the evaluation function to the possible output range.
This could also be achieved by simply capping the output at these values; however,
the resulting link function would not be differentiable, and saturation effects would
arise.

The link function chosen here is widely used in neural networks and known as the
sigmoid function:

g(x) =
1

1 + e−x
− 0.5 (5.3)

A nice property of this function is that its derivative, which will be needed by the
TD weight update algorithm, is

g′(x) =
1

1 + e−x
·
(

1− 1

1 + e−x

)
, (5.4)

which can be quickly computed together with g(x).
Plots of g(x) and g′(x) are shown in Figure 5.1 on the facing page. The weight

change is greatest for the “undecided” states, where the output of the evaluation
function is near 0. The closer the evaluation function’s output comes to saturation
(−0.5 or +0.5), the smaller the weight change.
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-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-8 -6 -4 -2 0 2 4 6 8

g(x) g′(x)

Figure 5.1: Plots of the link function g(x) and its derivative g′(x)

Algorithm 5.3 TD Update

1: function TdUpdate(r: learner role, ~e: eligibility traces, ~w: feature weights,
z, z′: current & next state)

2: Constants: λ: trace-decay rate, γ: future reward discount rate,
α: learning rate

3: δ ← R(r, z′) + γV (z′)− V (z)
4: ~e′ ← γλ~e+∇~wV (z)
5: ~w′ ← ~w + αδ~e
6: return 〈~e′, ~w′〉
7: end function

5.4 TD Weight Update

The weight update (Algorithm 5.3) is performed using the standard TD(λ) algorithm
(Sutton and Barto, 1998).

The reward that the learning agent receives on each state is given by the function

R(r, z) =

{
0.0096 · (goal(r, z)− 50), if terminal(z)

0 otherwise
. (5.5)

As one can see from this formula, the reward from the goal predicate is scaled from
the interval [0, 100] into the interval [−0.48, 0.48]. The reason why 0.0096 has been
chosen instead of 0.01 is that the link function g(x) has a domain of (−0.5, 0.5), and
if the outer limits of this domain are used for the training signal, it is possible that
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there exists no optimal weight vector.
The gradient ∇~wV (z) consists of n partial derivatives, which can be computed

separately for each i (1 ≤ i ≤ n). Using g′(x) from Equation 5.3, this gives

∂V

∂wi

(z) = g′

(
n∑

j=1

wj · evalnϕj
(z)

)
· evalnϕi

(z) , (5.6)

so line 4 can be replaced by the following efficient iteration:

d← g′
(∑n

j=1wj · evalnϕj
(z)
)

for i = 1 to n do
e′i ← γλei + d · evalnϕi

(z)
end for
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6 Empirical Results

This chapter will deal with the results of empirical experiments that were conducted
in this work to help judging the performance of the system. The order in which they
will be presented follows the order of the preceding chapters: First feature generation
and selection (Section 6.1), then evaluation function learning (Section 6.2).

6.1 Feature Generation and Selection

The system was tested on a diverse selection of 33 general games1, most of which
have already appeared in one of the competitions. A short description of each game
can be found in Appendix A.

All tests were performed on a 3.4 GHz Pentium IV with 2 GB of memory. The
maximum time allowed for the evaluation function was 25 ms. This value is quite
high, but has been chosen to allow the generation of many features and explore the
system’s abilities.

For some of the test games, the feature generation algorithm created too many or
too few features. These games will be analyzed first, before the main results will be
presented.

6.1.1 Too Many Features

Feature generation was aborted after the 100,000th feature was expanded. This
happened with the four most complex games: Blobwars and the three Chess variants
Endgame, Minichess and Skirmish2. These games were excluded from all subsequent
phases of the system (feature selection and evaluation function learning).

Figure 6.1 on page 57 demonstrates the development of the number of gener-
ated features for these games. For comparison, three games for which the Feature
Generation algorithm successfully terminated are also included in the graph (Eight-
Puzzle, Wallmaze and Merrills). An initial exponential growth in the number of
generated features is clearly visible for all games; while the graphs for Minichess
and Endgame already seem to flatten out, there is no sign of this for Blobwars and

1Most of these games are available at the GGP website: http://games.stanford.edu/.
2Note that, since the “parents” of each feature generation were counted instead of the “children”,

the total number of generated features is actually higher than 100,000 for those games, as shown
in Table 6.1 on page 60.
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Skirmish. Their exponential growth clearly indicates that the restrictions placed on
the feature transformations are not sufficient for these games.

6.1.2 Too Few Features

While the transformation restrictions were too loose for the games discussed in the
previous subsection, it turns out that they were too strict for others.

After analysis of the generated features, five main reasons why the system could
not generate sufficient features for some games could be identified:

Only recursive predicates in goal

This problem occurred in the games Hanoi and Othello. Hanoi’s goal predicate only
contains the auxiliary predicate tower for counting the number of discs on the third
tower. This predicate is recursive and is thus only expanded to its base case (zero
discs), which prevents further expansion beyond the literal definition of the goal
predicate.

The same problem happens with Othello. In Othello, there are two possible routes
for feature development:

1. the calculation of goal values; this quickly leads to the predicate piececount,
which is recursive, and

2. the calculation of legal moves, reached via regression; however, this leads to
openpiecestring and closedpiecestring which are also recursive.

Unfortunately, all these recursive predicates only have very uninteresting base cases.
Zenith could apply goal regression to these predicates, thanks to the goal regression
information in Zenith’s domain theory; however, since GDL games do not contain
this information, goal regression could not be applied here.

Goal formulæ too long

This is a problem for the games Quarto and Pentago. After expanding the macros
and predicates in the goal description, all feature formulæ in both games are non-
splittable conjunctions consisting of more than eight state-dependent conjuncts, so
they are discarded even before any abstraction transformations are applied. This
prevents the creation of any further features.

Non-descriptive goal predicate

The game Knightmove has a very non-descriptive goal predicate, since the reward
only depends on the fluent step: The longer the player “survives”, the greater the
reward. Since step is an ACF, it isn’t regressed, so no features exceeding the literal
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Figure 6.1: Number of new features per expansion depth for the four aborted games
(Blobwars, Skirmish, Minichess, Endgame) and the three non-aborted games with
the most features (Eight-Puzzle, Wallmaze, Merrills)
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goal description are generated. Even if step was regressed, the generated features
would probably not be very useful. Luckily, Knightmove is the only game where
this problem occurred, since the goal descriptions of all other games contain some
information on how to win the game.

Missing arithmetics

The problem with Beatmania is that the player’s points are accumulated in the
fluent blockscaught, and only features based on that fluent would make sense. The
feature formula holds(blockscaught(V1), Z), scoremap(V1, V2) from the goal
description would have to be specialized (by expanding scoremap) to produce good
features (otherwise it’s always true), but since scoremap is not state-dependent (and
also has 31 possible instantiations), it doesn’t get expanded by expand-predicate.
Alternatively, the variable V1 could be treated as a number and used as the feature
value (Fawcett’s Zenith system contained a similar feature transformation called
split-arith-calc). This would mean that one would have to detect that scoremap

is a numerical function mapping the domain [0, 30] into the range [0, 100] and ergo
V1 and V2 must are also be numbers. While this is certainly feasible, it was not
implemented due to lack of time.

Good features too special

There were also two games, Pancakes and Mummy Maze, for which good features
were generated by the feature expansion algorithm, but which were subsequently
eliminated by feature selection because they were too special. In the game of Pan-
cakes, all information is kept in a single fluent (porder) which represents a specific
configuration of the pancakes. Through goal regression, all configurations that are
1–3 steps away from reaching this configuration are generated, which would certainly
help in finding the solution. However, these features only match so seldomly in the
testing states that they are discarded because they are too special.

For Mummy Maze, too, there is a set of good features, where the mummy is
1–3 steps away from catching the explorer, or the explorer is 1–3 steps away from
reaching the exit, but these are also too special. The reason seems to be that the
testing states are generated randomly, and the explorer doesn’t find the exit through
random movements often enough, and the mummy doesn’t find the explorer often
enough. Since (apart from the ACFs control and step) the game has only the
fluent location (for the location of the mummy, explorer, and exit), all abstracted
features become meaningless: If one of the location fluents is removed, the feature
always matches and is filtered out by too-general.

Possible solutions to this problem for both games would be to either dynami-
cally adjust the rate at which a feature is deemed too special, or to add another
transformation that generalizes arguments of fluents, e. g., replacing constants by
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variables. Another solution would be to use states from actual gameplay between
expert players instead of random states for testing the matching ratio of features.
Unfortunately, such expert matches are not readily available in GGP.

6.1.3 Successful Feature Generation

After removing those games for which either too many or too few features were
generated, 21 games for which a good number of features were generated are left. On
these games, the feature generation algorithm produced 14,509 features on average
(range 48–118,016), of which 4,679 (42–30,184) are unique. Of those unique features,
the feature selection step picked on average 143 (20–632) features for inclusion in the
evaluation function. The resulting evaluation function took 10.18 milliseconds on
average (0.69–21.16) to compute for each state. The detailed results for each game
are shown in Table 6.1 on the following page. In most of the games, the total time
needed for the evaluation function stayed well below the limit of 25 ms, because only
full levels are included in the evaluation function; if the limit was exceeded during
the calculation of one level, none of the features of that level were included.

The average time needed for the feature generation algorithm was 124.9 seconds
(0.23–626.34); the feature selection algorithm took on average 216.31 seconds (2.97–
1184.68). Table 6.2 on page 61 shows the detailed numbers for each game.

6.1.4 Cost of transformations

Figure 6.2 on page 64 shows the numbers of produced features and the needed com-
putation time for each transformation. Since the computation time for a single
transformation is usually smaller than the time resolution of the used timer, these
results are somewhat unreliable: their sum is between 10% and 50% smaller than
the total time when measuring the whole process. However, the rough proportions
should be valid and can give an indication of the relative cost of the feature trans-
formations.

The most expensive transformations are remove-conjunct and expand-predicate.
Together, they account for more than 75% of the computation time. This can be
explained by the fact that these two transformations have to restore the variable
list (as described in Section 3.5), so trim-variables has to traverse a set of states,
which is the most expensive part of feature generation.

Table 6.3 also shows that split-disjunction has never been executed. The reason for
this is that while the game descriptions of 9 of the 33 test games contained disjunc-
tions (Eight-Puzzle, Blobwars, Checkers, Endgame, Merrills, Minichess, Tic-Tac-
Toe, Tic-Tic-Toe, Wallmaze), no valid feature was generated where this disjunction
occurred at the top level of the feature formula. Either the disjunction contained no
state-dependent subformula, or the feature contained non-state-dependent conjuncts
besides the disjunction that were never removed.
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Table 6.1: Number of generated, unique and selected features; average computation
time needed for the invocation of the resulting evaluation function per state

game generated
features

unique
features

selected
features

evaluation
function
time [ms]

to
o

fe
w

fe
at

ur
es

Beatmania 155 79 23 0.25
Hanoi 7 7 3 0.00
Knightmove 14 14 6 0.11
Mummy Maze 1010 553 7 2.05
Othello 90 60 3 0.13
Pancakes 386 325 10 0.09
Pentago 20 12 1 0.00
Quarto 17 12 3 0.02

go
od

fe
at

ur
es

Asteroids 455 274 138 3.83
Blocker 8510 1964 154 18.41
Bomberman 3072 1171 122 17.36
Breakthrough 14128 4730 133 8.92
Checkers 5271 2756 632 21.16
Chinese Checkers 48 42 25 1.94
Circle Solitaire 243 148 123 19.45
Connect-Four 803 273 141 13.12
Crisscross 953 452 122 2.75
Crossers3 12330 2871 122 19.68
Eight-Puzzle 118016 30184 144 3.43
Ghostmaze 9455 3963 78 19.71
Hallway 1763 630 93 17.73
Incredible 238 129 58 0.82
Merrills 43467 13411 189 14.44
Pacman 25634 10541 137 14.87
Peg 1591 672 20 0.69
Racetrack Corridor 1454 649 168 6.28
Tic-Tac-Toe 640 254 151 1.95
Tic-Tic-Toe 10831 2838 219 4.57
Wallmaze 45778 20308 29 2.67

to
o

m
an

y Blobwars 391214 111598 — —
Endgame 276769 100317 — —
Minichess 284338 104659 — —
Skirmish 350321 137335 — —
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Table 6.2: CPU time needed for Feature Generation and Feature Selection

game Feature
Generation

time [s]

Feature Selection
time [s]

total [s]

to
o

fe
w

fe
at

ur
es

Beatmania 0.20 1.04 1.24
Hanoi 0.01 0.01 0.02
Knightmove 0.08 0.64 0.72
Mummy Maze 13.37 97.94 111.31
Othello 2.85 22.96 25.81
Pancakes 0.30 1.16 1.46
Pentago 0.32 0.12 0.44
Quarto 0.05 0.12 0.17

go
od

fe
at

ur
es

Asteroids 3.18 12.96 16.14
Blocker 15.31 94.05 109.36
Bomberman 229.08 656.36 885.44
Breakthrough 122.92 95.29 218.21
Checkers 40.89 269.12 310.01
Chinese Checkers 0.23 6.17 6.40
Circle Solitaire 1.40 58.85 60.25
Connect-Four 3.17 42.40 45.57
Crisscross 2.17 9.81 11.98
Crossers3 23.63 98.36 121.99
Eight-Puzzle 467.09 75.26 542.35
Ghostmaze 216.31 600.84 817.15
Hallway 34.86 127.00 161.86
Incredible 0.25 2.97 3.22
Merrills 626.34 654.82 1281.16
Pacman 463.54 1184.68 1648.22
Peg 5.82 47.78 53.60
Racetrack Corridor 6.66 26.32 32.98
Tic-Tac-Toe 0.56 6.73 7.29
Tic-Tic-Toe 26.06 69.08 95.14
Wallmaze 333.41 403.72 737.13

to
o

m
an

y Blobwars 1414.20 — —
Endgame 7736.25 — —
Minichess 2610.22 — —
Skirmish 5832.62 — —
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Table 6.3: Total number of features produced by each transformation

game remove-
conjunct

split-
indep-
conj.

expand-
predicate

regress-
formula

expand-
to-base-

case

to
o

fe
w

fe
at

ur
es

Beatmania 5 93 21 24 0
Hanoi 0 0 0 0 0
Knightmove 0 0 0 0 0
Mummy Maze 308 565 108 21 0
Othello 29 24 2 2 25
Pancakes 0 22 0 350 0
Pentago 0 8 2 0 0
Quarto 0 8 1 0 0

go
od

fe
at

ur
es

Asteroids 159 159 0 108 0
Blocker 4538 695 0 1272 0
Bomberman 1210 1266 0 572 0
Breakthrough 8722 1870 1348 199 0
Checkers 854 2744 8 1254 0
Chinese Checkers 0 27 3 9 0
Circle Solitaire 20 73 3 61 0
Connect-Four 270 109 6 282 0
Crisscross 0 608 215 110 0
Crossers3 594 9359 6 2347 0
Eight-Puzzle 72683 6503 24385 3662 0
Ghostmaze 3501 4125 1308 400 0
Hallway 1032 475 2 62 0
Incredible 70 104 0 44 0
Merrills 18120 18924 2456 2902 0
Pacman 9669 11481 4046 420 0
Peg 1450 10 0 102 0
Racetrack Corridor 438 728 12 221 0
Tic-Tac-Toe 234 187 10 154 0
Tic-Tic-Toe 3943 20 10 890 0
Wallmaze 22260 14902 7104 860 0

to
o

m
an

y Blobwars 3561 237258 2593 146841 0
Endgame 125708 29590 34800 25906 49606
Minichess 141527 18436 93522 21783 0
Skirmish 127917 47185 112519 32572 20100
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Table 6.3: (cont.) Total number of features produced by each transformation

game remove-
variable

make-
root-

features

split-
disjunction

remove-
negation

total

to
o

fe
w

fe
at

ur
es

Beatmania 4 4 0 4 155
Hanoi 0 7 0 0 7
Knightmove 0 13 0 1 14
Mummy Maze 0 6 0 2 1010
Othello 0 6 0 2 90
Pancakes 0 14 0 0 386
Pentago 0 7 0 3 20
Quarto 0 7 0 1 17

go
od

fe
at

ur
es

Asteroids 22 6 0 1 455
Blocker 2000 4 0 1 8510
Bomberman 10 9 0 5 3072
Breakthrough 1982 5 0 2 14128
Checkers 404 7 0 0 5271
Chinese Checkers 3 6 0 0 48
Circle Solitaire 80 6 0 0 243
Connect-Four 127 6 0 3 803
Crisscross 15 5 0 0 953
Crossers3 3 14 0 7 12330
Eight-Puzzle 10777 6 0 0 118016
Ghostmaze 109 7 0 5 9455
Hallway 186 6 0 0 1763
Incredible 6 11 0 3 238
Merrills 1056 8 0 1 43467
Pacman 7 9 0 2 25634
Peg 13 15 0 1 1591
Racetrack Corridor 46 9 0 0 1454
Tic-Tac-Toe 47 5 0 3 640
Tic-Tic-Toe 5958 8 0 2 10831
Wallmaze 640 10 0 2 45778

to
o

m
an

y Blobwars 953 7 0 1 391214
Endgame 11151 5 0 3 276769
Minichess 9062 5 0 3 284338
Skirmish 10021 7 0 0 350321
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Figure 6.2: Number of features produced and CPU time spent by each feature
transformation, averaged over all 33 games

6.2 Evaluation Function Learning

Sections 6.1.1 and 6.1.2 have identified some games for which too many resp. too
few features have been generated. These were excluded from further examination.
On the remaining 21 games, the evaluation function learning algorithm has been
run, playing 2000 training matches. Table 6.4 on the next page shows the average
computation time needed to play a complete training match for each game. The
training graphs are listed in Appendix B.

The parameters used for the learning algorithm were:

• learning rate: α = 0.15

• trace-decay parameter: λ = 0.7

• future reward discount rate: γ = 0.9

• exploration rate: ε = 0.1

After the training was completed, 400 evaluation matches were run, with the
weights frozen and the epsilon-greedy parameter ε set to 0, so that the learner
always picked the action with the greatest expected reward. The opponents for
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6.2 Evaluation Function Learning

Table 6.4: Time needed for one training match

game time [s]

Asteroids 0.75
Blocker 14.98
Bomberman 41.48
Breakthrough 22.34
Checkers 31.47
Chinese Checkers 4.27
Circle Solitaire 0.70
Connect-Four 6.64
Crisscross 1.66
Crossers3 5.94
Eight-Puzzle 0.74
Ghostmaze 20.45
Hallway 24.60
Incredible 0.83
Merrills 28.35
Pacman 7.94
Peg 1.43
Racetrack Corridor 2.02
Tic-Tac-Toe 0.59
Tic-Tic-Toe 2.52
Wallmaze 1.41
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Figure 6.3: Percentage of average reward received by the learner vs. average of
opponents

these matches were controlled by a single-ply search using Fluxplayer’s fuzzy-logic
evaluation function.

The percentage of the reward that the learner received is displayed in Figure 6.3;
the detailed results are listed in Table 6.5 on the next page. The opponent results
listed for the single-player games were obtained by playing the game using the same
opponent evaluation function used during multiplayer games. The following sub-
sections will analyze the results in more detail. The games are grouped by their
properties: single-player games (Section 6.2.1), turn-taking games, i. e., games in
which all players except one have only one legal move in each state (Section 6.2.2),
and simultaneous games (Section 6.2.3).

6.2.1 Single-Player Games

Two games could be identified for which no sufficient reinforcement signal was re-
ceived: Eight-Puzzle and Incredible. All test matches of these games lead to a
reward of 0. The reason is that before any weights have been learned, the player
executes random actions, and the two games are so difficult that it is improbable to
find a solution randomly.

Since the player never finds a solution, there is no useful feedback to the rein-
forcement learning algorithm. Thus, even though there may be good features in

66



6.2 Evaluation Function Learning

Table 6.5: Average rewards after learning for 400 testmatches

game learner role learner opponent 1 opponent 2

Asteroids ship 50.00 34.63 —
Blocker crosser 2.50 97.50 —

Blocker 64.25 35.75 —
Bomberman bomberman 89.13 10.88 —

bomberwoman 97.88 2.13 —
Breakthrough white 56.00 44.00 —

black 40.25 59.75 —
Checkers white 7.88 92.13 —

black 13.25 86.75 —
Chinese Checkers red 71.94 36.25 24.94

green 80.38 24.94 25.00
blue 74.44 24.94 37.13

Circle Solitaire taker 100.00 63.96 —
Connect-Four white 87.75 12.25 —

red 67.25 32.75 —
Crisscross red 25.00 0.00 —

teal 0.00 0.00 —
Crossers3 top 15.75 42.15 34.60

right 20.05 41.75 29.63
left 17.28 33.03 42.98

Eight-Puzzle player 0.00 0.00 —
Ghostmaze explorer 49.88 50.13 —

ghost 61.88 38.13 —
Hallway white 50.00 50.00 —

black 50.00 50.00 —
Incredible robot 0.00 12.28 —
Merrills white 25.81 74.19 —

black 13.06 86.94 —
Pacman pacman 43.31 15.50 0.00

blinky 74.25 24.50 2.52
inky 100.00 0.00 4.00

Peg jumper 27.95 35.90 —
Racetrack Corridor white 91.06 16.19 —

black 91.34 17.54 —
Tic-Tac-Toe xplayer 95.75 4.25 —

oplayer 58.25 41.75 —
Tic-Tic-Toe white 34.75 65.25 —

black 41.63 58.38 —
Wallmaze white 0.00 0.00 —

black 0.00 100.00 —
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the evaluation function, the system is unable to learn any weights. A possible so-
lution would be to bootstrap the learning process from some “expert games” (see
Section 7.1.2 for a discussion of this). This would perhaps allow the algorithm to
assign the feature weights in a way that encourages moving towards the goal and
thereby enable the system to learn further weights on its own.

The three remaining single-player games are Peg, Circle Solitaire and Asteroids.
In Peg, around 44 % of the total reward (compared to Fluxplayer) could be achieved.
As Figure B.32 on page 97 shows, the training graph shows no improvement, which
is a hint that no good features could be generated from the game description.

For both Asteroids and Circle Solitaire, the learning system performs better than
Fluxplayer (around 60 % of the total points). In the game of Asteroids, the system
quickly learns to stop the ship and get 50 points; however, it doesn’t learn to stop
the ship at the planet to receive the full reward of 100 points. Since Circle Solitaire
is very simple, the system quickly learns a perfect winning strategy for this game.

6.2.2 Turn-Taking Games

This group of games comprises Breakthrough, Chinese Checkers, Crisscross, Tic-
Tac-Toe, Connect-Four, Checkers and Merrills.

The performance on Checkers and Merrills was significantly lower than Flux-
player’s (11 % of total points for Checkers, 19 % for Merrills). Analysis of the fea-
tures generated for Checkers revealed that the complete feature set contained many
similar features that only differed in various calls of the minus1, minus2 and minus3

binary predicates, which state that the first argument is a number that is 1 (resp.
2 or 3) greater than the second. In many of these calls, one of the variables was
a singleton. Useless features of this kind could be eliminated by extending the
simplifier.

The training graphs for Merrills (Figures B.27 and B.28 on page 95) show a strange
phenomenon: The rewards actually diminish as learning progresses. This indicates a
problem with the learning algorithm, which could not be clearly identified. Possibly
the chosen learning rate was too high.

On the remaining five games, the system performed very well (48 % for Break-
through, 72 %–78 % for the other four games). One notable effect occurred during
the training of Crisscross: The Fluxplayer opponent always took the center of the
board and stopped moving into its goal positions, blocking the learner. Figure 6.4
on the facing page shows the initial position and the final position, resulting in 25
points for red and 0 points for teal when Fluxplayer played teal. When Fluxplayer
played red, it moved in a way that only one teal peg reached its goal, and moved a
red peg in the last move of the game, resulting in 0 points for both players.

Such behavior would probably not occur during actual game play. This demon-
strates one risk of using a fixed opponent for training: It is possible that the train-
ing matches bear little resemblance with actual game play, which can mislead the
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(a) initial position (b) final position

Figure 6.4: Initial and final positions of the game Crisscross

trained evaluation function. This problem could be alleviated by using self-play
(playing against a backed-up version of the learning system itself).

6.2.3 Simultaneous Games

The last group of games consists of the games Hallway, Wallmaze, Crossers3, Blocker,
Tic-Tic-Toe, Racetrack Corridor, Ghostmaze, Pacman and Bomberman.

In the games of Wallmaze and Hallway, all training matches ended with the same
reward (0 for Wallmaze, 50 for Hallway). This meant that no meaningful reinforce-
ment signal was received. The cause is similar to the single-player games Incredible
and Eight-Puzzle: it is improbable to find a solution by executing random actions.

In Wallmaze, the goal is to exchange places with the opponent. The maze has very
narrow passages (see Figure 6.5 on the next page), and players can block each other,
so it is very improbable that a series of random actions leads to the goal position
during the limit of 30 steps. In fact, this never happened during the test games.
In Hallway, the situation is similar: both players start out on opposite directions
of the board, placing walls that obstruct movement. In Hallway, too, there is the
strict limit of 30 steps, and finding the solution randomly during that time limit
is improbable. As discussed in Section 6.2.1, a solution could be to initialize the
weights using expert games.

The games on which the system performed only moderately well are Crossers3
(32 %), Blocker (33 %) and Tic-Tic-Toe (38 %). For Crossers3, the training graphs
do not show any improvement, which is an indication that the generated features
are not very good. In fact, analysis of the features shows that the highest-valued
features only capture the notion of being one step away from the goal position, while
Fluxplayer can use a full distance heuristic.
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Chapter 6 Empirical Results

Figure 6.5: Initial state of the game Wallmaze

For Blocker and especially Tic-Tic-Toe, the low result is surprising, however:
Many meaningful features could be generated. Since the game descriptions and
generated features of Tic-Tic-Toe and Tic-Tac-Toe are very similar, and the results
for Tic-Tac-Toe were much better, the reason is probably that the learner assumes
a fixed random move for the opponent, upon which the learner can pick its move.
Especially for the two games of Blocker and Tic-Tic-Toe, this assumption is unreal-
istic, because the outcome of an action is very strongly related to the other player’s
action. That is why the learner is seriously disadvantaged opposed to Fluxplayer
on these games. The proper (but much more expensive) solution to this problem
would be to compute an optimal strategy based on Nash equilibria, or at least use
the same search strategies for both the learner and the opponent for the evaluation
games.

This problem did not occur on the other four simultaneous games: Ghostmaze
(55 %), Racetrack Corridor (84 %), Pacman (89 %) and Bomberman (94 %). In these
games, the actions of the players do not interact as strongly as in Tic-Tic-Toe and
Blocker. This could explain why the learner could achieve the majority of points on
those games.
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7 Conclusions

In this chapter, we will first assess the problems faced during the implementation of
the system and point out some directions for future work (Section 7.1). Afterwards,
a summary of the contributions will be given (Section 7.2).

7.1 Critical Assessment and Future Work

7.1.1 Feature Generation

Remove-Variable and Trim-Variables

In retrospect, the implementation of the feature generation algorithm would have
been much easier if the variable lists had been managed in a different way. Instead
of generating features with a full variable list and removing variables afterwards, all
features could be generated with an empty variable list, and features could be added
by a new transformation add-variable. In fact, the whole abstraction graph could
be built from features with an empty variable list, and variables could only be added
for those features that are selected for inclusion in the evaluation function.

This would also render the trim-variables optimization unnecessary; since more
than 90 % of the computation time for feature generation is spent during the state
traversals required by trim-variables, this would speed up the feature generation
algorithm considerably.

This course of action was even proposed by Fawcett (1993, p. 61). He decided
against it because Zenith does not develop features with a low discriminability fur-
ther; if a feature with an empty variable list proved invaluable, it would be discarded,
although a version of the feature with a non-empty variable list could be valuable.

Remove-Conjunct

Remove-conjunct is the transformation that is most expensive, both in the number
of generated features and total computation time, so it seems worthwile to look for
ways to limit the number of features it produces. Additionally, remove-conjunct
often removes a conjunct that is essential to the feature, so the generated feature
has a much smaller value than the original one. If expert matches were available
(see Section 7.1.2), one could detect if the generated feature’s correlation with the
eventual game outcome is much lower than the one of the original feature. This
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would make it possible to discard such meaningless features without developing
them further.

Expand-Predicate and Expand-To-Base-Case

For some games, no good features could be generated because the goal and terminal
predicates of their game description only contained recursive predicates. In that
case, the only applicable transformation is expand-to-base-case, which may not
generate good features. One could allow expand-predicate to partly unroll such
recursive predicates; however, this would increase the number of generated features
considerably. If a different approach to feature selection was chosen which does not
require exhaustive application of the transformations, this idea could be revisited.

Additional Transformations

The generated evaluation function would probably benefit from the inclusion of
more higher-level concepts, for example detection of arithmetics. This would make it
possible to use Zenith’s split-arith-comp and split-arith-calc transformations.
One could also add more game-playing-specific transformations that understand
concepts like distance on boards or material value of pieces. Fluxplayer’s current
fuzzy-logic-based evaluation function already contains such concepts, and that is
probably the reason why it outperforms the presented system in the more complex
games (e. g., Checkers or Merrills). The concepts described above can in principle
also be generated by the presented system, but take many more features, whereas
direct detection of such concepts would increase the efficiency of the evaluation
function.

7.1.2 Abstraction-Graph-Based Feature Selection

Abstraction-graph-based feature selection has been developed as a way to select
features without any information about the game except the game rules. Specifically,
no expert matches are needed, which are not readily available in GGP. No a priori
assessment of the quality of a feature is available, so the single selection criterion is
the degree of abstraction of a feature.

While this resulted in a very fast feature generation and selection procedure, the
experiments have unveiled several drawbacks:

1. In order to arrive at the most abstract features, the feature transformations
have to be applied exhaustively. This imposed the need for very severe restric-
tions of the transformations. Still, the number of generated features was too
high for the most complex games.

2. While these restrictions were too loose for some games, they were too strict
for others, causing an insufficient number of features to be generated.
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3. Using the degree of abstraction alone to guide the feature selection process
causes many irrelevant features to be included in the evaluation function.
These provide little or no information about the quality of a state while in-
creasing the total cost of the evaluation function.

A general game player has to work on a large variety of games, and there is
probably no fixed set of parameters that avoids both problem 1 and 2 for all games.
This could be addressed by a dynamic transformation restriction procedure, which
starts with very aggressive restrictions and loosens them until a sufficient number
of features has been generated.

The impact of Problem 3 would be much smaller if a high number of features
could be passed to the evaluation function learning algorithm, since the learning
algorithm can efficiently assign near-zero weights to irrelevant features. Buro (1999)
has demonstrated that fitting a huge number of feature weights (> 100, 000) is
unproblematic. However, using so many features was only possible because these
features are simple propositional conjunctions of atomic features. Such a restriced
feature formalism allows the features to be evaluated very quickly once the atomic
features have been evaluated. The actual set of atomic features used in GLEM was
limited to 192 very simple features (“white”, “black” or “blank” for each board cell),
which need to be known beforehand, so the actual feature selection takes place in
the choice of the atomic features.

In the feature formalism used in this thesis, the limiting factor is the relatively
high cost of the generated features. The feature formulæ contain variables, so the
formulæ cannot easily be decomposed into parts that can be computed separately.
Thus, each new feature adds to the time needed for the total evaluation function.
This forces the selection step to limit the number of features very aggressively, and
less features than expected could be included in the final evaluation function.

Given the importance of feature selection, the overall game-play performance of
the presented system could probably be largely improved by incorporating actual
game-play experience in the selection process. There are two ways to do this without
falling back to the iterative approach:

1. Staged evaluation functions. GLEM contained a remarkable way to gener-
ate the training set using the game tree search itself, without the requirement
of additional expert matches. It partitioned the game into 13 stages by ply
number, for each of which a separate evaluation function was learned. Ex-
haustive search was used to generate the labelled training data used to train
the evaluation function for stage 13; this evaluation function was used to train
stage 12, and so on.

This is helped by the fact that the stages of an Othello match can be so easily
identified: Practically all Othello matches consist of 58–60 plies. Using the ply
number to separate, for example, a Chess match would probably not work so

73



Chapter 7 Conclusions

well; instead, the number of remaining pieces on the board could be used to
this purpose. The adoption of this approach to GGP may be difficult, since
one does not know a priori how to partition a particular game.

2. Expert matches. Many special-purpose game playing systems use a set of
expert matches to train their evaluation functions. For many popular games,
huge sets of expert matches are available; unfortunately, this is not true in the
context of GGP, where nothing but the game rules is available. One way to
overcome this problem would be to generate these “expert matches” oneself,
for example by letting Fluxplayer play a series of games against itself, using
its current fuzzy-logic based evaluation function and game-tree search. The
time limit for the search would have to be in the same order of magnitude
as that used during actual game play, since it is important that the “expert
matches” are similar in quality to those encountered during actual game-play.
One drawback of this method is that the generation of these matches would
take much longer than the presented abstraction-based method.

If such “expert matches” were available, one could use the correlation between a
feature and the actual game outcome as a feature selection criterion1. This would
probably be a much more precise, albeit much more expensive feature selection
method than the current abstraction-graph based one. Such a selection method
should also solve the problem that in some games, good features were discarded as
being “too special” since they matched too few states: In the “expert matches”, good
features should match more often than in random play.

7.1.3 Evaluation Function Learning

Some games were difficult enough that the learner never found a solution during the
initial random exploration. As a result, the learner always received the same rein-
forcement signal, which prevented further progress. If expert games were available,
this problem could be addressed by bootstrapping the learning process from these
games and continue learning using the implemented TD(λ) method.

On several games, the Fluxplayer opponent was either too weak, too strong, or –
in one case – behaved in a way that blocked progress. This effect could be countered
by using self-play: playing against a backed-up version of the learner with negated
weights, and performing a new backup whenever the winning ratio has reached a
given threshold. In general, self-play is shown to produce good results, but takes
longer to converge than playing against a competent opponent.

The time needed for the evaluation function could be reduced by successively
pruning features that constantly have a near-zero weight.

1This criterion is not infallible, since it is very difficult to determine a priori the quality of any
predictor value in a multiple regression model, but it should be good enough as a selection
criterion.
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7.2 Summary

To counter the problem the learner had with some of the simultaneous games, one
could look into alternatives to the current “randomize all opponents” approach. A
careful evaluation would have to be done if the greater precision of such a method
is worth the associated cost and the resulting lower number of training matches.

7.2 Summary

In this thesis, Fawcett’s ideas have been applied to the context of GGP for the
first time. With GDL, a language was used that provides less explicit information
about a game than Zenith’s Prolog domain theory. In some cases, this required
a more elaborate approach than Zenith’s feature transformations, for example the
automatic deduction of operator pre-images for goal regression.

The combination of Zenith’s feature transformations with reinforcement learning
was explored. This required to use a non-iterative approach to feature generation
and selection.

A feature selection method had to be devised that can operate without feedback
from learning, and without any extra information such as expert matches. With
abstraction-graph-based feature selection, a new approach that meets these require-
ments was developed. It is based on the explicit analysis of abstraction relationships
between the features and allows to deduce the degree of abstraction for any feature
analytically.

The complete system has been evaluated on an extensive set of games to ensure
that the system’s parameters were not biased towards any particular game. With
Fluxplayer’s fuzzy-logic-based evaluation function, a state-of-the-art general game
player has been chosen as the baseline opponent. The system successfully generated
an evaluation function that outperformed its opponent in several games.
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Appendix A Overview of the Games

Asteroids A single-player game where the player controls a spaceship on a 20× 20
board. The primary goal is to make the ship stop at a given position; the
secondary goal is to stop the ship anywhere.

Beatmania A conversion of a video game to GGP; originally a single-player game,
in this version one player (the dropper) takes the role of the video machine,
dropping blocks in one of three slots. These fall down (Tetris-like) and must
be caught by the player at the bottom. Since the dropper always receives 100
points, this game only makes sense for the player and could be classified as a
single-player game.

Blobwars A two-player strategy game on an 8× 8 board. The players’ “blobs” can
jump two spaces or duplicate into an adjacent cell; the opponent’s pieces can
be converted. Whoever has the most blobs when the board is filled wins.

Blocker A game for two players, the blocker and the crosser, played on a 4 × 4
board. Both players mark fields simultaneously. If both choose the same
field, the blocker takes precedence. The crosser’s goal is to form a bridge of
connected fields, the blocker must prevent that.

Bomberman An arcade game for two players. Both can simultaneously move
around and drop bombs. The goal is to blow up the opponent.

Breakthrough A two-player strategy game played on an 8× 8 board. Both players
control 16 pieces that can move and capture. Whoever reaches the opponent’s
home row first wins.

Checkers Checkers, also known as Draughts, is a two-player strategy game on an
8× 8 board. Each player has 12 pieces that can move and capture forward.

Chinese Checkers A simplified version of the popular board game Chinese Checkers
for three players; only three pieces each. Move all your pieces to the other side
of the board by moving and jumping over other pieces.

Circle Solitaire A single-player game involving eight places in a circle that hold
either a green or red disk or are empty. The player can remove any green disk,
causing its place to be empty and the disks on the two adjacent places to be
flipped, if there are any. Another option is to reset the game to the original
state. The goal is to remove all disks with as few resets as possible.
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Connect-Four A two-player game where the players drop coins into one of seven
slots and try to make a line of four pieces.

Crisscross A smaller version of Chinese Checkers for two players, with four pieces
each on a rectangular board.

Crossers3 A three-player game with simultaneous moves, played on a triangular
board. Each player starts in a corner and has to reach the opposite edge.
While moving over the board, the pieces leave a trail of walls, so it is possible
to get stuck. The earlier a player reaches its goal position, and the fewer
opponents do, the higher each player’s reward.

Eight-Puzzle A sliding puzzle where the player’s goal is to move eight numbered
pieces into order.

Endgame A Chess endgame position. White king and white rook against black
king.

Ghostmaze A game with two asymmetric roles, the ghost and the explorer. The
explorer has to find the exit by moving through a maze of walls; the ghost can
move through any wall and drop slime. The ghost has won when the explorer
walks into a cell that is occupied by slime, or the ghost drops slime while in
the same cell as the explorer.

Hallway A two-player game played on a 9 × 9 board. Each player controls a piece
that must reach the opposite row. Also, walls can be placed onto the board to
restrict movement.

Hanoi The single-player game Tower of Hanoi. Five discs and three pillars. Find a
way to move all discs to the third pillar while never placing a bigger disc on a
smaller one.

Incredible A composite single-player game: The well-known blocks world with six
blocks and a simle single-player game called maze.

Knightmove A puzzle also known as the Knight’s Tour. The player controls a single
piece that moves according to the regular rules for a knight in chess. It starts
on an empty chess board and must visit each state exactly once.

Merrills An abstract strategy two-player game played on an irregular board, also
known as Nine Men’s Morris. Each player has nine pieces (called men) that
can move between the board’s twenty-four intersections. When a connected
line of three pieces is formed, it is called a “mill” and allows the player to
remove one of the opponent’s men. The last player to have three or more men
wins.
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Minichess An endgame position from a smaller version of Chess on a 4× 4 board.
White rook and white king against black king. White has to mate in 10 moves.

Mummy Maze Another two-player maze game, where the explorer has to find the
exit and the mummy has to catch him. The explorer starts nearer to the exit,
but the mummy can move twice as fast.

Othello The two-player strategy board game Othello, also known as Reversi. Play-
ers take turns in placing disks on the board; all disks of the opponent that
are caught in a “span” between two own disks by a move are converted to the
moving player’s color. The player with the most disks in the end wins.

Pacman The famous arcade game for three players: Pacman and two ghosts. Pac-
man has eat as many pellets as possible, while the ghosts try to catch him.

Pancakes A single-player puzzle. Flip eight pancakes into the right order.

Peg Peg Solitaire is a single-player board game. The board is initially filled with
pegs except for the central hole. The goal is to remove all pegs except one in
the central position.

Pentago Pentago is a two-player game played on a 6× 6 board that is divided into
four 3 × 3 quadrants. A move consists of placing a piece on the board and
then rotating one of the quadrants by 90 degrees. The first player to form a
line of five pieces wins.

Quarto Quarto is a two-player game played on a 4×4 board. The 16 pieces have four
dichotomous attributes each: color, shape, height and consistency. The piece
that is to be played next is chosen by one of the players, then the opponent
has to place it. The goal is to make a row of four pieces that conform in one
attribute.

Racetrack Corridor A race between two players, both moving simultaneously in
separate lanes. Also, walls can be placed to slow down the opponent.

Skirmish A chess variant on a regular chess board, but only one king, one rook, two
knights and four pawns per side. Contrary to regular chess rules, there is no
check; the king acts as a regular piece. The goal of the game is to capture as
many of the opponent’s pieces as possible.

Tic-Tac-Toe The popular children’s game Tic-Tac-Toe, or Noughts and Crosses.
Place X and O marks and get three in a line.

Tic-Tic-Toe Simultaneous Tic-Tac-Toe.
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Wallmaze A two-player game with simultaneous moves, where the two players have
to exchange places in a maze. There is a reward for reaching one’s goal position,
with extra points for being the first or even only one to do so. The two players
can block each other.
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Figure B.1: Training rewards for Eight-Puzzle (player)
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Figure B.2: Training rewards for Asteroids (ship)
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Figure B.3: Training rewards for Blocker (blocker)
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Figure B.4: Training rewards for Blocker (crosser)
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Figure B.5: Training rewards for Bomberman (bomberman)
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Figure B.6: Training rewards for Bomberman (bomberwoman)
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Figure B.7: Training rewards for Breakthrough (black)
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Figure B.8: Training rewards for Breakthrough (white)
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Figure B.9: Training rewards for Checkers (black)
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Figure B.10: Training rewards for Checkers (white)
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Figure B.11: Training rewards for Chinese Checkers (blue)
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Figure B.12: Training rewards for Chinese Checkers (green)
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Figure B.13: Training rewards for Chinese Checkers (red)
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Figure B.14: Training rewards for Circle Solitaire (taker)

88



0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

re
w

ar
d

(p
oi

nt
s)

number of training games

Figure B.15: Training rewards for Connect-Four (red)
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Figure B.16: Training rewards for Connect-Four (white)
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Figure B.17: Training rewards for Crisscross (red)
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Figure B.18: Training rewards for Crisscross (teal)
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Figure B.19: Training rewards for Crossers3 (left)
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Figure B.20: Training rewards for Crossers3 (right)
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Figure B.21: Training rewards for Crossers3 (top)
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Figure B.22: Training rewards for Incredible (robot)
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Figure B.23: Training rewards for Ghostmaze (explorer)
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Figure B.24: Training rewards for Ghostmaze (ghost)
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Figure B.25: Training rewards for Hallway (black)
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Figure B.26: Training rewards for Hallway (white)
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Figure B.27: Training rewards for Merrills (black)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

re
w

ar
d

(p
oi

nt
s)

number of training games

Figure B.28: Training rewards for Merrills (white)
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Figure B.29: Training rewards for Pacman (pacman)
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Figure B.30: Training rewards for Pacman (inky)
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Figure B.31: Training rewards for Pacman (blinky)
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Figure B.32: Training rewards for Peg (jumper)

97



Appendix B Training graphs

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

re
w

ar
d

(p
oi

nt
s)

number of training games

Figure B.33: Training rewards for Racetrack Corridor (black)
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Figure B.34: Training rewards for Racetrack Corridor (white)
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Figure B.35: Training rewards for Tic-Tac-Toe (xplayer)
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Figure B.36: Training rewards for Tic-Tac-Toe (oplayer)
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Figure B.37: Training rewards for Tic-Tic-Toe (black)
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Figure B.38: Training rewards for Tic-Tic-Toe (white)

100



0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

re
w

ar
d

(p
oi

nt
s)

number of training games

Figure B.39: Training rewards for Wallmaze (black)
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Figure B.40: Training rewards for Wallmaze (white)
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