
LogFS - finally a scalable flash file system

Jörn Engel
IBM Deutschland Entwicklung

<joern@wh.fh-wedel.de>

Robert Mertens
University of Osnabrück

<robert.mertens@uos.de>

Abstract

Currently, two different solutions for filesystems on flash storage
exist: Flash Translation Layers in combination with traditional filesys-
tems and log-structured flash file systems. This paper analyzes the
weaknesses of both approaches and derives a number of requirements
that help avoiding these weaknesses. Finally the basic concept of a
tree structured flash file system fulfilling all of these requirements is
presented.

1 Flash

1.1 Flash introduction

Many types of flash memory exist - NAND, NOR, AG-AND, ECC-
NOR, ... All of them differ in details, but share the same principles.
Flash differentiates between write and erase. Empty flash is com-
pletely filled with ones. A flash write will flip individual bits from 1
to 0. The only way to toggle bits back from 0 to 1 is by performing a
flash erase.

Erases happen in coarse granularities of an erase block, which is usu-
ally a power of two from 32k to 256k. Writes can happen in smaller
granularities of as little as one bit (NOR), 8-16 bytes (ECC-NOR),
256, 512 or 2048 bytes (NAND, AG-AND).

NAND manufacturers call the write granularity a ”page”, but most
OS developers would confuse this with an MMU page, so the name
should not be used. Filesystems also work with blocks, which are quite
unlike flash erase blocks. For the purpose of this paper, the flash write
granularity shall be a ”write block”, the erase granularity an ”erase
block” and the filesystem granularity an ”fs block”.

1.2 Flash limitations

Hardware manufacturers aim to use flash as hard disk replacements.
There are however a few relevant differences between the two that
affect filesystem design:

1. Flash requires out of place updates of existing data. Before being
able to write to a specific location, that erase block has to be
erased. After being erased, all bits are set to 1. An unclean
unmount at this time will cause data loss, as neither the old nor
the new data can be retrieved.

2. Lifetime of flash erase blocks is limited by the number of erase cy-
cles on them. Hardware manufacturers usually guarantee 100.000
erase cycles. This number is per individual erase block. Hard
disks have no such limitation.

3. Erase blocks are significantly larger than hard disk sectors or
filesystem blocks. Therefore, erase blocks must be shared by
several filesystem blocks. During operation, erase blocks get par-
tially obsoleted and require garbage collection to free space. For
details, see 1.3.

When comparing these limitation with any filesystem designed for
hard disk usage, the result is obvious. Trying to use conventional
filesystems on raw flash will turn new and expensive devices into pa-
perweights.

1.3 Garbage collection

Garbage collection for flash filesystems closely follows the ”segment
cleaning” methods described in [1]. Data is not deleted, but obsoleted.
Obsolete data still occupies space, and cannot be deleted without also
deleting valid data in the same erase block.

Therefore a garbage collector will clean an erase block by moving all
valid data into a free block, obsoleting it in the old erase block. After
this, all data in the old erase block is obsolete and the block can be
deleted. The space previously consumed by obsoleted data is the net
gain of this operation.

An important property during garbage collection is the ratio of obso-
lete and valid data. Garbage collecting blocks with 50% obsolete data
requires processing of two blocks to gain one free. With only 10%
obsolete data, ten blocks need to be processed for the same result.
Obviously, the goal is to collect blocks containing as much obsolete
data as possible.

2 Current flash users

2.1 Flash translation layers

One strategy to deal with the limitation described in 1.2 is to create
a virtual block device for use by a regular filesystem. This is what
the various flash translation layers (FTL) do. The three differences
are dealt with inside the FTL - to the filesystem the virtual device
supports writes of multiple sectors of 512 bytes to aligned offsets.

A write of block B to the virtual block device causes an FTL to do
several things. First, the new content of block B is written to flash.
Second, the flash area associated with the old content is obsoleted.
Third, garbage collection may take place to free new blocks for subse-
quent writes to flash. Depending on the concrete FTL used, additional
writes to flash may be necessary to store the mapping between block
device and flash content, account for free blocks, etc.

But even in a perfect implementation, an FTL will still be inefficient.
The block device abstraction has no distinction between free and used
data - both are just the same. The distinction between free and used
data on the block device can only be made by the user - in this case
a filesystem. Independently of the content, the complete block device
must be viewed as valid data.1 Therefore, the flash medium contains
only little obsolete data and garbage collection has a bad ratio of ob-
solete/valid data.

With complete knowledge of the filesystems internal structures, the
FTL could detect deleted files and treat blocks previously occupied
by these files as undefined and hence obsolete data. But filesystems
never tell the FTL about obsolete blocks (i.e. due to file deletion),
so the FTL could only guess by analyzing data written to the block
device, for example by looking at the Ext2 free block bitmaps. But
if such a guess ever goes wrong, data will be lost. Therefore, such
techniques have only been implemented for FAT and even there range
between ineffective and dangerous.

This GC-induced movement of obsolete data makes an FTL both
slower than necessary and reduces the flash lifetime. People wanted
something better.

1Actually, this is not quite true. Initially the whole content of the block device is
undefined and can be treated as obsolete data. The state mentioned above becomes true
once the complete block device contains defined data, i.e. has been written.

2.2 Flash filesystems

A flash filesystem differs from regular filesystems by operating directly
on a flash device - MTD in Linux - instead of an intermediate block
device. It is well aware of the difference between flash write and flash
erase, knows the size of a erase block and can perform garbage collec-
tion.

All existing flash filesystems in the FOSS world, JFFS, JFFS2 and
YAFFS, have a log structured design. All writes to flash happen in
units of a node, which basically consists of some file data, the inode
number, an offset within the inode, the data length and a version
number2. See [3] for more details.

Updating an existing area in a file is done by simply writing out an-
other node for this inode and offset, with a version number higher
than all previous ones. So, as for all log structured filesystems, writes
are extremely simple and fast.

Reading a file consists of finding all nodes for it, discarding those
that have been replaced by newer nodes, and assembling everything.
Since it is nowhere defined where the node for any particular file can
be found, this effectively requires searching the complete medium for
nodes - an expensive operation called a scan.

Performing a full scan on every file read would result in unacceptable
benchmark numbers, so this operation is done just once during mount
time. From the data retrieved, an in-memory tree is created, holding
all necessary information to find all nodes for any particular file with-
out doing the full scan.

But this mount time scan is still expensive. On the authors notebook,
mounting an empty JFFS2 on a 1GiB USB stick takes around 15 min-
utes. That is a little slower than most users would expect a filesystem
mount to happen. On top of that, the in-memory tree requires sev-
eral hundred kiB or MiB, an amount that matters a lot for embedded
systems.

Over the last few years, users have constantly complained about both
mount time and memory usage. YAFFS has a slightly optimized de-

2Other fields also exists, but don’t matter at this point

sign in this area, requiring less of each. But all existing flash filesys-
tems are still O(n) - with different constant factors.

3 LogFS

3.1 Requirements

Based on above analysis, we can deduce several requirements that a
scalable flash filesystem must fulfill:

1. Filesystem design is based on a tree, similar to Ext2.

2. Updates must be done out-of-place, unlike Ext2.

3. The root node must be locatable in O(1) time.

4. The filesystem must work on raw flash, without FTL.

5. Data corruption on crashes must be prevented.

The following is a design proposal that fulfills above requirements. It
is by no means the only possible design3, but likely the first. Where
possible, it is based on Ext2 - the most commonly used filesystem for
Linux.

3.2 Wandering trees

A A’
/ \ C’ / \
B C E’ / \ B C’

/ \ becomes: G’ => / \ => D E’ => / \
D E F G’ / \ D E’

/ \ F G’ / \
F G F G’

Wandering trees allow tree updates with out-of-place writes. This
means an update of node G is done in the following steps. First, a
new node G’ is written first. Then, the parent node E is updated by
writing a new node E’, pointing to G’ and all previous children of E,
is written. Continuing up the tree, all parents are updated in this
manner until the root A is replaced with a new root A’.

3Artem Bityuckiy is working on a different design

3.3 Anchor nodes

Anchor nodes are the necessary amount of log-structured design to
find a tree’s root node in flash. A small area of at least two erase
blocks are set apart for (version—offset) tuples. As usual, the highest
version wins and all older ones are ignored. Therefore, the complete
anchor area needs to be scanned once at mount time to find the newest
anchor - which points to the current root node.

After an update to the wandering tree, all that is still required is
to write a new anchor node with an incremented version number to
finalize the data changes.

3.4 The hardlink problem

A A’
/ \ / \
B C B C’

/ \ => / \
D E D E’
\ / \ \ / \
F G F F’ G

The user view of a filesystem is often perceived as a tree, but under
Unix this is only true for directories. Regular files can have several
hard links, which effectively merges tree branches again. Since inodes
only have information about the number of hard links to them, not
their origins, it is impossible to follow all paths to a particular file
without walking the complete directory tree.

Hard link handling is not a problem for hard disk based filesystems,
since updates can happen in-place. With out-of-place updates, all ref-
erences to an inode would need to be updated.
If we used a Unix filesystem structure directly as basis for our wander-
ing trees, every update would automatically break hard links. While
this can be a useful property as well [4], it breaks POSIX semantics.
Therefore we need something more sophisticated.

3.5 Inode file

Unlike Ext2, LogFS does not have a specialized disk area to store in-
odes in. Instead, it uses a specialized file, the inode file. Apart from
simplifying the code - file writes and inode writes are identical now -

this is the necessary layer of abstraction to solve the hardlink problem.

With an inode file, the tree consists of only two levels, the inode file
being the root node and every inode being a leaf node. Directory
entries simply contain the inode number, which is used as an offset
within the inode file.

Inode file
| | | | | | |
A B C D E F G

Hence, there is only one remaining reference to any inode - from the
inode file. The data structure is actually a tree again and permits use
of the wandering tree strategy. Plus, when walking up the tree, only
the changed node and the inode file need to be updated.

3.6 Name choice

The name ”LogFS” was picked as a development title only. It is
a bad joke about JFFS2, the Journalling Flash Filesystem that is
not journalling but log-structured. LogFS would be the first flash
filesystem that is not log-structures, so its name would be just as
wrong as JFFS2.
Proposals for a product name are welcome.

4 Conclusion

This paper has demonstrated the lack of a scalable flash filesystem
and analyzed existing solutions, pointing out their individual short-
comings. A requirement list for a working solution is given and some
of the central building blocks for a scalable flash filesystem are ex-
plained. While this is an important step, there is still work missing,
esp. in the area of garbage collection and block handling - which will
be presented in a future paper.

References

[1] The Design and Implementation of a Log-Structured File System
http://citeseer.ist.psu.edu/rosenblum91design.html

[2] Understanding the Flash Translation Layer (FTL) Specification
http://www.intel.com/design/flcomp/applnots/29781602.pdf

[3] JFFS: The Journalling Flash File System
http://sources.redhat.com/jffs2/jffs2.pdf

[4] Cowlinks
http://wohnheim.fh-wedel.de/˜joern/cowlink/

	Flash
	Flash introduction
	Flash limitations
	Garbage collection

	Current flash users
	Flash translation layers
	Flash filesystems

	LogFS
	Requirements
	Wandering trees
	Anchor nodes
	The hardlink problem
	Inode file
	Name choice

	Conclusion

