
A GENETIC ALGORITHM FOR VLSI PHYSICAL DESIGN AUTOMATION
�

Volker Schnecke� Oliver Vornberger
University of Osnabr�uck� Dept� of Math� �Computer Science
D������ Osnabr�uck� Germany

ABSTRACT

Solving discrete optimization problems with genetic
algorithms is in many aspects di	erent from the so

lution of continuous problems� The blindness of the
algorithm during the search in the space of encod

ings must be abandoned� because this space is dis

crete and the search has to reach feasible points after
the application of the gentic operators� This can be
achieved by the use of a problem speci�c genotype
encoding� and hybrid� knowledge based techniques�
which support the algorithm during the creation of
the initial individuals and the following optimization
process� In this paper a genetic algorithm for the
layout generation of VLSI
chips is presented� which
optimizes two� usually consecutively solved tasks si

multaneously� together with the placement of the
modules� the routes for the interconnection nets are
optimized�

INTRODUCTION

One of the main feature of a genetic algorithm ap

plied to an optimization problem is the fact� that
it does not deal with the problem itself� but with
encodings of solutions for this problem� Thus the
genetic algorithm explores the space of these encod

ings rather than the solution space itself� For contin

uous parameter optimization problems� both spaces
are identically� A straight
forward genotype encod

ing in this case is a string of genes� which are simple

oats� Each gene represents an element of the vector
de�ning a point in the solution space� The standard
mutation operator randomly modi�es single genes�
and crossover is done by direct merging of two gene
strings� which results in two o	spring� All o	spring
represent correct encodings and these encodings de

�ne admissible solutions to the given optimization
problem� because of the one
to
one �genotype to phe

notype� mapping between both spaces�

For discrete problems with string type genotype en

coding� not every possible string represents a correct
solution� It is even worse that simple crossing
over
of two individuals does not necessarily lead to a cor

rect o	spring� There some repairment has to be done

�This work is being supported in the BMBF�project

�HYBRID�Applications of Parallel Genetic Algorithms for

Combinatorial Optimization��

after crossing� which reduces the parent to o	spring
correlation�

For solving discrete real
world optimization prob

lems� there has to be an application speci�c genotype
encoding and �intelligent� operators� which only cre

ate admissible individuals� During the application
of these operators� problem speci�c knowledge can
be used to generate high quality o	spring� Here �
in contrast to function optimization for example �
bad genes� which would never be a building
block
in a global optimal solution� could be recognized�
The designer of a genetic algorithm can take care
that these bad genes are not included in the pop

ulation by hill
climbing strategies� which could be
integrated in the construction of the initial individ

uals or during the application of the operators� In
opposite to this� one could not know the good genes�
i� e� the building
blocks which construct the opti

mal solution� Therefore� the designer has to support
the genetic algorithm by presenting a pool of good
genes� From this pool the algorithm can compose
some good and �hopefully� eventually the optimal
solution to the given optimization problem�

In the following� after a short description of the phys

ical design process of VLSI
chips� a problem speci�c
genetic algorithm for the layout generation is de

scribed� This approach takes into account the pre

vious mentioned items by covering the following fea

tures�

� a problem speci�c genotype representation

� a hybrid approach for the creation of the initial
population

� problem speci�c� �intelligent� operators

� multiple gene representation in a single individ

ual

LAYOUT GENERATION

Modern VLSI �very large scale integrated� mi

crochips contain some million transistors� The de

sign cycle for these chips consists of di	erent serial
steps �e� g� system speci�cation� functional design�
logic design� circuit design� physical design����� The
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physical design outlines the transformation of a cir

cuit description �which is the result of the preced

ing circuit design process� into the layout of a chip�
which is needed for the following fabrication step
��� ��� The layout includes the geometric descrip

tion of the circuit components and the information
for the routes of the interconnections between them�
It also has pads positioned on its borders for the I�O

connections of the chip� The objectives in layout gen

eration are to minimize the area of the circumscrib

ing rectangle and to produce a routing with short
wirelengths� especially for some critical nets�

Due to its complexity� the physical design is usually
divided into various� consecutive sub
steps� The cir

cuit has to be partitioned to get a number of modules
�macro cells� which have to be placed on the chip
��oorplanning�� During placement there has to be
enough space reserved to ensure the completion of all
interconnections later on� In the routing phase� pins
on the border of the modules have to be connected�
This is done in two steps� In the global routing the
�loose� routes are determined� while in the detailed
routing the exact routes for the nets in each channel
between two modules are computed� The last step in
the physical design is the compaction of the layout�
where it is compressed in all dimensions so that the
total area is reduced� The algorithmdescribed in this
paper combines the routing with the placement pro

cess during layout generation� For a more detailed
description of the usual phases and possible solution
methods in contrast to the approach described in this
paper see ����

THE INPUT

The input to the layout generation process for macro

cell layouts is a set of modules� which are rectan

gular blocks� Each module represents a functional
unit which consists of hierarchically arranged sub

cells� There are two kinds of modules �cf� �g� ���
A �xed module has �xed dimensions with exact ter

minal positions for the interconnection nets on its
borders ��g� �� top�� A �exible module can have
various implementations with di	erent aspect ratios�
which are de�ned by a shape�function� This is a step

function which is characterized by a set of minimal
width�height combinations ��g� �� bottom�� For the
interconnection nets of a 
exible module� only a list
of terminals for each side is given but no exact termi

nal positions� because these vary with the di	erent
implementations�
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Figure �� The input for a �xed cell �top�
and a 
exible cell with the shape

function �bottom�

A GENETIC ALGORITHM

FOR LAYOUT GENERATION

A layout is described by the positions of the mod

ules� the chosen implementation for the 
exible mod

ules and the routes of the interconnection nets on
the layout
surface between the cells� Such a com

plex phenotype can not directly be represented by
a gene
string of elementary data
types� A feasible
way to characterize the placement of the modules is
a binary slicing tree� This tree is the problem spe

ci�c genotype encoding for the layout optimization
�cf� �g� ���

Figure �� The genotype representation
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The structure of the tree �xes the relative placement
of the single blocks �modules� which are represented
by its leaves� Each inner node represents a meta�
block� which de�nes the arrangement for the set of
blocks characterized by the leaves of the correspond

ing sub
tree and information about the routing in

side this partial layout� All possible implementations
for 
exible blocks are taken into account by storing
shape
functions for all nodes in the tree so that a
single individual represents di	erent layouts� if some
blocks are 
exible� When combining two blocks to
a meta
block� the arrangement and the rotation of
the composed blocks are �xed� Hence� the shape

functions of both blocks can be added which results
in a shape
function for the meta
block� The number
of implementations for the meta
blocks in the higher
levels of the tree does not grow exponentially with
their height in the tree because there are redundant
implementations ���� For the example shown in �gure
�� two 
exible blocks with three and two implemen

tations are positioned upon� The shape
function for
the resulting meta
block has only two di	erent �non
redundant� implementations� An upper bound for
the routing space inside the meta
block is computed
and added to its shape
function�

Figure �� The combination of two 
exible
blocks to a meta
block and the
addition of routing space

HYBRID CREATION OF INDIVIDUALS

The slicing
tree for an individual of the initial pop

ulation is composed in a bottom
up fashion� A spe

cial heuristic � the iterated matching ��� � is used

to create building
blocks which de�ne high quality
partial layouts� For that� a complete graph is con

structed� the nodes represent the blocks� and each
edge is weighted with a value which de�nes the qual

ity of a meta
block consisting of the two blocks char

acterized by the adjacent nodes� A matching in this
graph is a set of disjunct node pairs and the max�
imum weighted matching is the matching with the
maximal sum of edge weights �cf� �g� ��� The qual

ity of a meta
block is marked out by the number of
common nets of the combined blocks�
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Figure �� A matching graph for four
blocks� the three possible match

ings and the maximumweighted
matching �c�

The matching process is iterated for each level of the
tree until the root node is computed� In the second
iteration� meta
blocks which consist of two blocks
are paired� in the third iteration meta
blocks with
four blocks are combined� and so on� This heuristic
places highly connected blocks together and so re

duces the overall wirelength and the total area of the
layout� Because the iterated matching is a determin

istic process� care has to be taken to create various
individuals� For that� randomness is included in the
computation of the edge weights for some of the used
matching graphs�

THE INTEGRATED ROUTING

Because of the hierarchical construction of the in
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Figure �� The construction of the detailed
routing when combining a meta

block

dividuals and the binarity of the tree� the detailed
routing on the layout can be computed during the
placement of the blocks� Note that a meta
block is
considered to be a �xed unit in the higher levels of
the tree� When combining two blocks� all routing
inside the resulting meta
block is done �cf� �g� ���
Terminals on the outer borders are passed on as ter

minals to the outer border of the meta
block� Ter

minals in the channel and on the outer sides of the
blocks are connected� if they are shared by a com

mon net� Nets inside the channel which could not
be connected or have to be connected to more termi

nals than only those contained in this meta
block are
passed on as terminals to one of the borders which
are adjacent to the channel� For these nets� the direc

tion of the way out of the channel is determined by a
top
down traversal of the tree following the bottom

up construction phase� During this phase there is
a check for each net� whether it is included inside of
one of the partial layouts which are joined in an inner
node� In this case� the net has to cross the channel
and therefore a pseudo
optimal way for this net out
of the channels in both sons of this node can be �xed
�cf� �g� ���

This method achieves that the nets follow the hierar

chy of the cuts de�ned by the slicing tree structure�
This way is often not optimal� but during the opti

mization process� the optimal structure of the slicing
tree � regarding layout area and routing � is com

puted� In comparison to former experiments� where

Figure �� Fixing a global route by a top

down traversal �left� for the
pseudo
optimal way �right�

the global routes were chosen randomly when com

bining the meta
blocks� here the total wirelength is
considerably reduced� When choosing random routes
for all nets out of the channels� many nets are routed
to the outer border of the layout and have to be con

nected after composing the root node� Of course
it could be possible to do the optimization of these
routes by the genetic algorithm later on� but if one is
able to compute �nearly� optimal routes �by hand��
there is no need for passing this work to the genetic
algorithm�

MULTIPLE GENES

As mentioned before� all resulting implementations
for the meta
blocks containing 
exible blocks are
stored� Storing all alternatives is useful because one
could not decide in the lower levels of the tree� which
implementation of a meta
block would be the best to
minimize the overall area of the layout� Due to the
simple adding of shape
functions and the binarity of
the tree� the optimal sizing of the 
exible modules
to reach an optimal layout �optimal for the special
placement� can directly be determined by a top
down
traversal of the tree after �xing the best implemen

tation for the root node ����

This technique can be characterized as storing mul

tiple genes in some locations of the genotype� It is a
very good example for an opportunity the designer
of a gentic algorithm has to increase its performance
without directly guiding the search� when two blocks
are combined� good combinations can be determined
and bad combinations can be eliminated� But which
of these good combinations are the best to be com

posed to a global optimal solution� Just let the ge

netic algorithm decide by making available a pool of
good building
blocks�
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THE OPTIMIZATION PROCESS

After the construction of the initial individuals�
which already contain a lot of good components�
the genetic algorithm starts the optimization by
modifying individuals �mutation�� and by combining
building
blocks �crossover�� Beside a mutation op

erator for changing the arrangement of two blocks
inside a meta
block� the main mutation operators
modify the slicing tree �cf� �g� ��� One operator
exchanges blocks or meta
blocks� which corresponds
to exchanging cells or partial layouts on the lay

out surface� The other important mutation opera

tor changes the structure of the tree by randomly
picking out a subtree and inserting it into the tree
at a di	erent position� which corresponds to moving
cells or partial layouts on the layout surface� Here
storing all important implementations for the meta

blocks once more enhances the performance of the
genetic algorithm� because for a moved partial lay

out a di	erent implementation might be better in its
new environment�

Figure �� Mutation by exchaning blocks
�top� and by changing the struc

ture of slicing tree �bottom�

The implementation of the crossover operator is
straight
forward� Two individuals are randomly cho

sen to produce one o	spring� Two disjunct subtrees
are searched in the parents which are composed to a
subtree in the o	spring� Because these subtrees usu

ally do not build a complete layout� a third part has
to be added to the layout of the resulting o	spring�
Due to this� the heritability �number of transmitted

genes from the parents� is smaller than for problems
where crossing
over directly leads to a correct indi

vidual� During the adding of the missing blocks into
the tree of the o	spring� the iterated matching is
used once more to construct new �good� building

blocks� It has turned out to be not helpful to do
some �intelligent� crossover� i� e� looking for large dis

junct subtrees� for example� Research is carried out
to include a recombination operator for gene pool
recombination� Here an o	spring is constructed by
combining building
blocks out of a pool of good par

tial solutions�

When designing a genetic algorithm for a speci�c
problem� it is very important that a global optimum
can be reached starting from any set of individuals by
the application of the genetic operators� For an al

gorithm with tree
structured genotype encoding this
means� if recombination only combines real subtrees
with at least two leaves� then each pair of leaves con

tained in the encoding of an optimal solution must
already exist in one of the initial individuals� or must
be able to be constructed by mutation� Otherwise
the genetic algorithm will never reach the optimum�

Figure �� A layout with �� macro
cells
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RESULTS

The algorithm has been tested on real
world circuits
with �� to �� modules and up to ��� nets� Fig

ure � presents a layout for a circuit with �� �xed
modules and ��� nets� For a direct comparison to
commercial placement and routing tools� an e�cient
channel routing algorithm has to be implemented�
In the current version� a very simple routing strat

egy is applied when combining two blocks� for each
net in the channel� one special track is added which
results in an excessive routing space� Apart from
the quantitative comparison it can be said that this
is the only known approach to the layout generation
process� which concurrently optimizes the placement
together with the detailed routing�

FUTURE RESEARCH

A parallelization of the genetic algorithm is planned
and along with this the implementation of a strat

egy adaptation ���� There are many mutation opera

tors� which are applied with di	erent frequencies� It
might be ingenious to exchange or move large parts
of the layout during the early stage of optimization�
and doing only minor changes when the population
converges to an optimum� This can become possible
by adapting the frequencies of the di	erent mutation
operators during the optimization�

Further a gene
pool recombination operator ��� ��
will be implemented which might replace the current
crossover operator� For a combinatorial optimiza

tion problem like the layout generation� the biologi

cally motivated crossing of two parent chromosomes
is likely to be less e�cient� The construction of an
o	spring out of a pool of good building
blocks seems
to be more suitable�

CONCLUSIONS

For the application of genetic algorithms to optimize
combinatorial problems� the focal point is to �nd a
proper genotype encoding and all genetic operators�
which are necessary to enable the algorithm to reach
a global optimum� Solutions to real
world optimiza

tion problems are too complex for being represented
as a simple gene
string� In the layout optimization
process� due to the problem speci�c genotype encod

ing as a binary tree� the genetic algorithm is able to
compute and optimize the routing on a chip concur

rently with the placement of the modules� Usually
in VLSI
CAD tools this is done in consecutive steps
because of the complexity of the single optimization
problems� But according to the strong interdepen

dencies between the arrangement of the modules and
the routing of the interconnection nets� it is wise to

combine both steps�

The described application is a good example for the
tasks which research on genetic algorithms should
deal with� Because of the nondeterministic be

haviour and the long runtimes� genetic algorithms
will never succeed against other optimization meth

ods for low complexity problems that allow fast
greedy solutions� But for high complexity prob

lems without any known sophisticated solution tech

niques� a genetic approach is well suited� By solving
such a hard and complex problem� critics can eas

ily be convinced of the power and the advantages
of genetic algorithms� When designing a genetic al

gorithm for such a special application� it is impor

tant to withdraw from usual solution methods in one
part� but using hybrid approaches and problem spe

ci�c knowledge for hill
climbing in another� By do

ing so� there always is the trade
o	 between directed
search and random search� The designer has to �nd
out� which part of the optimization can be done �by
hand�� how the genetic algorithm can be supported
during the search process� and which tasks must be
left for the genetic algorithm to work on�
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