AIDA* — Asynchronous Parallel IDA*

Alexander Reinefeld and Volker Schnecke
PC? — Paderborn Center for Parallel Computing
D-33095 Paderborn, Germany

{ar|ossi } @uni-paderborn.de

Abstract

We present, AIDA* a generic adaptable scheme
for highly parallel iterative-deepening search
on large-scale asynchronous MIMD systems.
AIDA* is based on a data partitioning scheme,
where the different parts of the search space are
processed asynchronously in parallel. Existing
sequential solution algorithms can be linked to
the ATDA* routines to build a fast, highly par-
allel search program.

Taking the 15-puzzle as an application domain,
we achieved an average speedup of 807 on a
1024 processor system, corresponding to an ef-
ficiency of 79% on Korf’s [1985] 25 largest prob-
lem instances. Specific problem instances yield
more than 90% efficiency.

The total time taken by AIDA* to solve Korf’s
100 random puzzles on a 1024-node system was
24.2 minutes. This 1s 5.7 times faster than the
most efficient parallel algorithm on a 32 K CM-
2 machine, SIDA* by Powley et al.

1 Introduction

Heuristic search is one of the most important techniques
for problem solving in Artificial Intelligence and Opera-
tions Research. Since search algorithms usually exhibit
exponential run-time, and sometimes also exponential
space complexity, the design of efficient parallel search-
ing methods is of obvious interest.

The backtracking approaches used in Al and OR ben-
efit from a wealth of powerful heuristics that eliminate
unnecessary states in the search space without affecting
the final result. The most prominent methods include
the universal branch & bound technique and dynamic
programming, which examine only branches that are be-
low/above a current upper/lower bound on the solution
value. While these schemes are successfully applied in

many problem domains, they do not work in domains
with

e low solution density,
e high heuristic branching factor,

e poor initial upper/lower bounds on the optimal so-
lution value.

Typical examples include single-agent games like the
15-puzzle [Korf, 1985],
[Wimer et al., 1988], and some variants of the cutting
stock problem [Morabito et al., 1992]. For this kind of
applications, there exists a simple and efficient back-
tracking method, called [terative-Deepening A* (IDA*)
[Korf, 1985], that performs a series of independent

VLSI floorplan optimization

depth-first searches, each with the cost-bound increased
by the minimal amount.

In this paper, we present AIDA* a parallel imple-
mentation of iterative-deepening search on a massively
parallel asynchronous MIMD system. AIDA* is based
on a data partitioning scheme, where the different parts
of the search space are processed asynchronously by the
distributed processing elements. A simple, but effective
task attraction scheme combined with a weak synchro-
nization mechanism ensures high processor utilization
and good scalability for up to more than a thousand
processors.

Running on a 1024 processor transputer system, we
achieved a speedup of 807 on twentyfive problem in-
stances of the 15-puzzle, corresponding to an efficiency
of 79%. Using Korf’s [1985] random problem instances
as a benchmark suite, AIDA* runs more than five times
as fast as the fastest SIMD implementation, SIDA* by
Powley et al. [1993], which was implemented on a CM-2
with 32 K processing elements. While such a compari-
son might seem unfair, because a single CM-2 processing
element is about 100 times slower than the T805 trans-
puters of our system, there are 32 times more process-
ing elements in the CM-2. Hence one would expect our

transputer prograrn to run taree times 1aster. rnowever,
we achieved a time improvement by a factor of 5.7, due
to faster work-load balancing and almost zero synchro-
nization costs.

In the following, we first discuss the basic ideas of
sequential IDA*, give a brief overview about previous
parallel approaches, and present the AIDA* algorithm.
Most of the paper is devoted to the discussion of our
empirical performance results, including an analysis of
the various overheads.

2 Iterative-Deepening Search

Iterative-Deepening A* (IDA¥) [Korf, 1985] performs a
series of independent depth-first searches, each with the
cost-bound increased by the minimal amount. Following
the lines of the well-known A* heuristic search algorithm
[Nilsson, 1980, Pearl, 1985], the total cost f(n) of a node
n is made up of the cost already spent in reaching that
node g(n), plus a lower bound on the estimated cost of
the path to a goal state h(n). At the beginning, the cost
bound 1s set to the heuristic estimate of the initial state,
h(root). Then, for each iteration, the bound is increased
to the minimum value that exceeded the previous bound,
as shown in the following pseudo code:

procedure [DA* (n);

bound := h(n);

while not solved do

bound := DFS(n,bound);

function DF'S (n,bound);
if f(n) > bound
then return f(n);
if h(n) =0
then return solved;
return lowest value of DFS(n;, bound)
for all successors n; of n

With an admissible (=non-overestimating) heuristic
estimate function h, IDA* is guaranteed to find an
optimal (shortest) solution path [Korf, 1985]. More-
over, IDA* obeys the same asymptotic branching fac-
tor as A* [Nilsson, 1980], if the number of newly ex-
panded nodes grows exponentially with the search depth
[Korf, 1985, Mahanti et al., 1992]. This growth rate, the
heuristic branching factor, depends on the average num-
ber of applicable operators per node and the discrimina-
tion power of the heuristic estimate h.

3 Applications

Typical application domains for IDA* search include
VLSI floorplan optimization, some variants of the cut-
ting stock problem and single-agent games like the 15-

puzzie. 1hese problems may be characterized by a nign
heuristic branching factor, a low solution density and
poor information about bounds that can be used to
prune the search tree.

We tested the performance of our parallel AIDA* al-
gorithm on one hundred randomly generated problem in-
stances [Korf, 1985] of the 15-puzzle. In its more general
n X n extension, this puzzle is known to be NP-complete
[Ratner and Warmuth, 1986]. While exact statistics on
solving the smaller 8-puzzle are known [Reinefeld, 1993],
the 15-puzzle spawns a search space of 16!/2 ~ 103
states, which cannot be exhaustively examined. Using
IDA*, an average of 10® node expansions are needed to
obtain a first solution with the popular Manhattan dis-
tance (the sum of the minimum displacement of each tile
from its goal position) as a heuristic estimate function.

4 Parallel Approaches

Previous approaches to parallel iterative-deepening
search include parallel window searches, tree decompo-
sition, search space mappings and special schemes for
SIMD machines.

Powley and Korf [1991] presented a Parallel Window
Search, where each processor examines the entire search
space, but with a different cost-bound. Depending on
the application, this method works only for a hand full of
processors (e.g., 5-9 in [Powley and Korf, 1991, p. 475])
and the solution cannot be guaranteed to be optimal.

Kumar and Rao’s [1987,1990] parallel IDA* variant
is based on a task attraction scheme that shares sub-
trees (taken from a donator’s search stack) among the
processors on demand. For a selected problem set they
achieved almost linear speedups on a variety of MIMD
computers. These favorable results, however, apply only
for MIMD systems with small communication diameters,
like a 128 processor Intel Hypercube, a 30 processor Se-
quent Balance and a 120 processor BBN Butterfly. On a
128-node ring topology their algorithm achieved a maxi-
mum speedup of 63. From Kumar and Rao’s analysis, it
1s evident that these results do not scale up to systems
of, say, some thousand processors.

The algorithm of Evett et al. [1990] performs a map-
ping of the search space onto the processing elements of a
SIMD machine. This allows to eliminate duplicate states
at the cost of an increased communication overhead.

Two other approaches, SIDA* by Powley et al. [1993]
and IDPS by Mahanti and Daniels [1993] also run on
the CM-2. From these, SIDA* is probably the fastest
parallel IDA* implementation, solving all 100 problem
instances [Korf, 1985] of the 15-puzzle in 2.245 hours.

1. Phase

i Nptdizpt:

< tinit

2. Phase

ct < tpase
3. Ph. individual searches start here
base level for

load balancing

Figure 1: AIDA* Algorithm Architecture

5 AIDA¥*

In the following we describe AIDA*, a generic adapt-
able scheme for highly parallel iterative-deepening search
on asynchronous MIMD systems. AIDA* is based on a
data partitioning scheme, where the different parts of
the search space are processed asynchronously by the
fastest available sequential routines running in parallel
on the distributed processing elements. Existing sequen-
tial search code can be adapted to the parallel AIDA*
system by linking the routines for initial tree partition-
ing, work-load balancing and communication. A sim-
ple, but efficient task attraction scheme combined with
a ‘weak’ synchronization mechanism ensures a high pro-
cessor utilization and good scalability up to some thou-
sand processors.
ATDA* consists of three phases (cf., Fig. 1):

e ashort initial data partitioning phase, where all pro-
cessors redundantly expand the first few tree levels
in an iterative-deepening manner until a sufficient
amount of nodes is generated to keep each proces-
sor busy in the next phase,

e an additional distributed node expansion phase,
where each processor expands its ‘own’ nodes of the
first phase to generate a larger set of, say, some
thousand fine grained work packets for the subse-
quent asynchronous search phase,

e an asynchronous search phase, where the proces-
sors generate and explore different subtrees in an
iterative-deepening manner until one or all solutions
are found.

None of these three phases requires a hard synchro-
nization. Processors are allowed to proceed with the
next phase as soon as they finished the previous one.
Only in the third phase, some mechanism is needed to
keep all processors working on about the same search
iteration. However, this synchronization is a weak one
(as opposed to hard barrier synchronization), allowing
the processors to proceed with the next iteration after

checking for work in their neighborhood only.

olmiuar to INeWDOIn s | 1JOS| unsyncnronizea werattvery
deepening parallel alpha-beta, each processor carries out
an iterative-deepening search on its selected subset of
nodes. Our work-load balancing scheme ensures that all
processors finish their iterations at about the same time.

5.1 Phase 1: Initial Data Partitioning

Before starting a distributed tree search, each proces-
sor must be supplied with a suitable amount of different
nodes which can then be further expanded in parallel.
This could be achieved in logarithmic time, O(log P),
on P processors, using a binary divide-and-conquer ap-
proach. However, since communication on a MIMD-
machine is usually an order of magnitude more time-
consuming than the node expansion costs!, AIDA* gen-
erates the first few tree levels redundantly on all pro-
cessors. In the 15-puzzle, the processors perform an
iterative-deepening search, saving all nodes of the last
search frontier in a local node array, until there are at
least 5 - P entries. This gives a sufficient number of sub-
tree roots (some 10,000 nodes) while not overflowing the
memory resources of our transputer system.

At the end of this phase, duplicate nodes can be elim-
inated from the node array. In our experiments, how-
ever, we found that sorting the node array takes too
much time. A total of 30% removed duplicate nodes (cf.
[Powley et al., 1993]) at the end of this phase gave only
a 10% reduction of the total nodes, which did not pay
for the increased overhead.

In practice, the first phase is short, taking less than
three seconds (cf., Fig. 4) on the 1024-node system.
There is neither communication or synchronization in-
volved in this phase.

5.2 Phase 2: Generating Fine Grained Work
Packets

In the second phase, processor P; takes its mnodes

Ny, Npts, Napys, ... from the frontier node array t;,:; to
get a wide-spread distribution of search frontier nodes.
The nodes are expanded by applying two IDA* itera-
tions, giving a new search frontier, fp45¢, as shown in
Figure 1. At the end of the second phase, the local node
arrays of the individual processors contain about 3000
frontier nodes each. These nodes make up the work pack-
ets used in dynamic load balancing in the third phase.
As before, there is neither synchronization nor commu-

nication involved in this phase.

!This is especially true for the 15-puzzle with its cheap
operator cost.

J.0 I'hase o: ASsyncunronous searcn witn
Dynamic Load Balancing

The following iterations start on the frontier nodes #p45e.
All processors expand the nodes of their local array up
to the current search-threshold. Since the size of the
subtrees emanating from the #4,5. nodes is not known a
priori, dynamic load balancing is required.

Our implementation of AIDA* employs a simple task
attraction scheme. The P = n? processing elements are
connected in a n x n torus topology (i.e. a mesh with
wrap-around links in the rows and columns). Each pro-
cessor 1s a member of two rings with n elements: the
horizontal and the vertical ring.

A processor first expands its local frontier nodes of
level tpgse. When running out of work, it sends a
work request in clockwise order along the horizontal
link of the torus. The first processor with unexpanded
frontier nodes in 1ts array sends a work packet back to
the requester. If none of the processors on the horizon-
tal ring has work to share, the request continues its path
along the ring and eventually returns to the requester,
indicating that the current iteration run out of work on
this horizontal ring of the torus. The requester now
sends a work request along the vertical ring using the
same mechanism. If again no processor responds with
a work packet, an out_of work message is sent on both
rings and this processor starts the next iteration. We
call this a weak synchronization — as opposed to a hard
barrier synchronization. It keeps all processors work-
ing at about the same iteration, while not requiring too
much idle time [Newborn, 1988]. In practice, our weak
synchronization works much like a majority consensus
approach. When searching for a first solution, care must
be taken that all processors working on shallower iter-
ations finish their search before returning the optimal
solution.

Note, that any work package is exclusively owned by
a single processor. Whenever a package is transferred to
another processor, it changes ownership. This is done
with the expectation that all subtrees grow at about the
same rate from one iteration to the next. Hence, the load
balance will automatically improve during the search. In
fact, the number of work packets decreases with increas-
ing search time (cf., Fig. 7).

5.4 Implementation Details

While the above description gives a general outline of
the AIDA* scheme, the actual implementation is more
sophisticated:

e When a processor is done with its local nodes,
it can start a new iteration when 1t receives an

Oout_ oI WOIrK Imnessage Or detects a worrK. request
with a higher cost threshold on the ring.

e To keep communication costs low, up to five nodes
are bundled in a work packet. To avoid the donator
from giving away all of its non processed nodes, only
half of these are transferred.

o At the end of each

tyase are re-ordered?: Medium size subtrees with

iteration the nodes 1In

avg-nodes/2 < x < 2 x avg_nodes are sorted to
the end of the array, so that only work packets of
average size will be transferred to other processors.

e In the hard problems (with many iterations),
the size of work packets can differ by an or-
der of magnitude. We therefore experimented

with node splitting and node contraction strategies

[Chakrabrti et al., 1989] to adjust the work packets

to an average size. Qur preliminary results indicate

that the additional overhead does not pay off.

6 Empirical Results

We implemented AIDA* on a 1024-node MIMD trans-
puter system, using the 15-puzzle as a sample applica-
tion. Figures 2 and 3 show the speedup results for two
sets of 25 random problem instances with different diffi-
culties. Speedup anomalies (cf. [Kumar and Rao, 1990])
were avoided by searching all nodes of the last (goal) it-
eration. We call this the ‘all-solutions-case’ as opposed
to the ‘first-solution-case’, where it suffices to find one
optimal solution. Qur fifty problem instances are the
larger ones from Korf [1985], here sorted to the number
of node generations in the ‘all-solutions-case’. We also
run AIDA* on Korf’s fifty smaller problems. However,
with an average parallel solution time of 8 seconds, a
1024-node MIMD system cannot be sufficiently utilized,
so we did not include the data in this paper.

The speedup S of a parallel algorithm is measured as
the ratio of the time taken by an equivalent and most
efficient sequential implementation, T'(1), divided by the
time taken by the parallel algorithm, T'(P):

(1)

S(P) = Zpy

Care was taken to use the most efficient sequential
algorithm for comparison. Our IDA* is written in C and
generates nodes at a rate of 35,000 nodes per second
on a T805 transputer, corresponding to 350,000 nodes
per second on a SUN Classic Workstation, or 660,000

2This is just a partial re-ordering, not a total sort. Nodes
are sorted to the average size of all subtrees in the last iter-
ation, avg_nodes.

768 Sopt
S .
1%
e
e Sreal
d 512 —
u Sa Ye?
b 1_sol
S
256 —
128 —
64 —
T I I I]
128 256 512 768 1024
Processors P
Figure 2: Speedup, prob. #51..75
1024 — .
Sopt
Sreal
768 —
S Sall_sol
1%
e
e
d 512 —
u
1%
S
256 —
128 —
64 —
T I I I]
128 256 512 768 1024

Processors P

Figure 3: Speedup, prob. #76..100

nodes per second on a SUN SparcStation 10/40. Similar
sequential IDA* run-times have been reported by Powley
et al. [1993].

Figures 2 and 3 show the performance results on a
torus topology. For each problem set, three graphs are
shown:

Sept: The topmost graph shows the maximum
speedup that could be achieved with an opti-
mal parallel algorithm (with zero overheads)
This is a hy-

pothetical measure to show how much time 1s

after the first phase is done.

taken by the initial data distribution phase.

Sreai: The middle graph shows the speedup that
would be obtained by a search for the first so-
lution, one that stops right after one solution

has been found. It includes the startup-time

overniead, the cominunication overhead due to
load balancing and the weak synchronization
between iterations of the third phase.

Sati_sot: The bottom graph shows the actual speedup
(measured in terms of elapsed time) of the ‘all-
solutions-case’. Compared to Sycqr, 1t also con-
tains termination detection overhead and idle
times due to processors which are done ‘too
soon’ in the last iterations while others are still

working on their last subtree.3

As 1s evident from Figures 2 and 3, good speedups are
more difficult to achieve for the small problem instances
#51..75 than for the hard ones #76..100. On the 1024-
node system, the small problems take only an average
of 16 seconds to solve, while the more difficult require
three minutes. Hence, the negative effect of the initial
work distribution, which is about constant for all prob-
lems, does not hamper the overall speedup in the hard
problems too much.

7 Overheads in AIDA*

In this section, we analyze the various sources of over-
heads in more detail.

7.1 Initial Work Distribution

In the first phase, all processors perform a synchronous
iterative-deepening search on the first few tree levels,
storing all nodes of the last search frontier until there
are at least 5 - P nodes in each processor’s local node
array. This gives a sufficient number of work packets
while not overflowing the memory resources.

For the larger systems, more nodes must be generated
to give every processor a sufficient amount of ‘own’ nodes
to work on. Hence, the CPU time spent in the first phase
increases linearly with the system size, as shown in Fig-
ure 4. This additional node generation overhead does
not reduce the overall efficiency of AIDA* in the large
problems #76..100 too much. As shown in Figure 5, less
than 1.5% of the total search time is spent in the first
phase. Only the small problems #51..75 require up to
10% for the initial work-load distribution. This is just
another manifestation of Amdahl’s Law. The scalabil-
ity of AIDA* can be improved by reducing the size of

*While in the ‘first-solution-case’ node expansion can be
stopped after a first solution is found, all processors must fin-
ish searching their current subtree in the ‘all-solutions-case’.
Due to different work packet sizes, which vary most in the last
iteration, some processors might get idle while others are still
expanding their last tree. Most of the overheads in Sai_sor
can be reduced by implementing a stack-splitting strategy as
in [Kumar and Rao, 1990].

abs.
time
[sec]

I I 1
128 256 512 768 1024

Processors P

Figure 4: Absolute time of first phase

10.0 — L #5175
/
/
8.0 ’
’
s
re.lat. 6.0 P
time //
(7] 4.0 .
7
/s
e
- -
2.0 p 476..100
-
7
T | I I |
128 256 512 768 1024
Processors P

Figure 5: Time of first phase relative to

total search time

the first phase or by expanding different subtrees on the
parallel processors in a divide-and-conquer approach.

Note, that in the second phase, every processor starts
node expansion on its own subtrees, thereby fully ex-
ploiting the parallel processing power.

7.2 Communication Overhead

Communication is another source of overhead hamper-
ing the performance of parallel algorithms, especially
those running on massively parallel systems. Fortu-
nately, AIDA* exhibits a very low communication over-
head. Starting with 64 processors, one would expect
the communication rate to increase by a factor of six-
teen when increasing the system size to 1024 processors.
However, as can be seen in Figure 6, the actual number
of messages increases only by a factor of six. The curves
seem to level off with growing system size, which can be
explained by an increased likelihood that work requests
are answered in the immediate neighborhood of the idle

300 4 #51..100
#mess 200
per work-mess.
proc #51..100
100

T T 1 T T 1
128 256 512 768 1024

Processors P

Figure 6: Messages per processor (last iteration only)

300 — 300
200 — — 200
total | L work-
mess. mess.
100 — — 100

1st 2nd 3rd 4th 5th

[teration

Figure 7: Messages per iteration (1024 procs.)

processor. As a consequence, the average distance be-
tween sender and receiver does not increase linearly with
the system size.

At the end of an iteration, only a single work request
is sent around the ring to indicate that there is no fur-
ther work available in the current iteration. All other
processors on the ring are informed by an out_of work
message. They directly start the next iteration without
asking for further work.

Moreover, as shown in Figure 7 the communication
overhead seems to decrease with increasing search time.
This is because the transferred nodes change ownership
when being shipped to another processor, thereby con-
stantly improving the global work-load balance. The
number of messages that went through a single proces-
sor on a 1024-processor system decreases rapidly in the
last two iterations. Due to this effect, one can assume
an even lower communication overhead in other applica-
tions involving more iterations.

7.3 Termination Detection

With the weak synchronization scheme between the iter-
ations, special provision must be taken to ensure that the
returned solution i1s optimal in the ‘first-solution-case’.
When a goal node is found in iteration ¢, all processors

WwOorkKing on iterations < 2 must complete tneir searcn to
prove that no better solution exists.

In the ‘all-solutions-case’ (subject of this paper) the
last iteration is searched to completion until all proces-
Due to the
varying branching degree; the subtree sizes can hardly

sors examined all their assigned subtrees.

be estimated in advance. This results in different ter-
mination times for the parallel processors. As shown in
Figures 2 and 3 (compare the two bottom graphs Syeq
and Sgii_sor) the time spent in the finishing phase is ap-
preciable. Note however, that this will usually not occur
in the search for one solution, a case, that is more im-
portant in practice.

8 Conclusions and Future Research

In this paper, we presented a universal scheme for
asynchronous parallel iterative-deepening search on mas-
sively parallel MIMD systems. Any sequential iterative-
deepening algorithm can be linked to our generic AIDA*
routines without much modification. Compared to a
similar parallel MIMD scheme by Kumar and Rao [1990],
our method is more general and obeys less communica-
tion overhead, especially on MIMD systems with a large
diameter.

Moreover, AIDA* proved to be scalable for more than
one thousand processors with a high efficiency.

For the ‘first-solution-case’, we solved Korf’s [1985]
hundred puzzle instances in 24 minutes, which is 5.7
times faster than SIDA* [Powley et al., 1993] running
on a 32K CM-2. Comparing SIDA*’s theoretical speed
of 32K processors x 322 nodes/sec = 10,551,296
nodes/sec for the whole system with AIDA*’s theo-
retical speed of 1024 processors x 35,000 nodes/sec
= 35,840,000 nodes/sec for our whole system, it is evi-
dent, that our MIMD approach makes better use of the
processors. This is a remarkable result, considering that
our faster machine solves the smallest 70 problems in less
than 10 seconds each. Here, losses due to initialization
are most pregnant. On the other hand, it is a more am-
bitious task to keep all processors of a SIMD machine
working on relevant parts of the search space.

Our future work includes the solution of the 19-puzzle,
where all heuristics that are known up to date, must be
put together to obtain a solution within reasonable time
limits. At the present time, we have solved 20 smaller?
problems of 100 random 19-puzzle instances with an av-
erage runtime of 34 minutes on the 1024 processor sys-
tem. VLSI floorplan optimization [Wimer et al., 1988] is

Yavg. values: Manhattan distance h = 46, solution path
length g = 67.5, 11.8 iterations, 56.2 billion nodes

anotner practical application, wnicn we intend to solve

with ATDA*.

Appendix: All-Solutions-Case Data

Prob Speedup Time
" [S(256) | S(512) | S(768) | S(1024) | T(1024)
51 163.8 | 278.9 | 363.3 419.4 11
52 195.2 | 351.8 | 492.0 303.9 18
53 209.7 | 393.7 | 389.2 453.4 11
54 196.6 | 360.3 | 502.1 620.2 9
55 211.8 402.9 430.2 419.5 10
56 196.9 | 355.1 | 503.8 597.2 10
57 184.8 341.0 474.8 541.0 11
58 211.0 330.4 | 446.9 531.9 11
59 213.8 | 3383 | 460.5 563.8 12
60 210.6 | 403.3 | 577.2 500.1 13
61 190.5 354.2 323.3 349.1 24
62 221.2 393.8 562.2 707.8 11
63 215.3 3594 | 4924 604.4 13
64 213.3 411.4 | 457.1 560.8 14
65 208.8 | 401.4 | 5734 728.9 13
66 211.1 317.2 432.1 518.8 18
67 216.2 | 413.8 | 473.6 579.1 16
68 219.9 | 399.0 | 570.5 730.6 17
69 216.5 | 415.8 | 595.3 769.2 14
70 216.2 416.9 599.4 534.9 24
71 211.2 352.2 494.9 616.5 20
72 212.5 427.1 625.3 653.5 21
73 221.4 | 404.5 | 576.6 736.5 21
74 222.4 406.5 589.6 754.0 24
75 222.0 | 382.8 | 541.3 682.8 23
76 220.3 428.8 624.4 811.9 21
77 218.0 | 423.5 | 625.0 801.0 32
78 218.0 | 413.7 | 599.7 775.1 34
79 222.0 | 444.2 | 536.3 666.0 37
80 221.3 | 397.1 | 559.1 717.3 34
81 220.1 431.3 637.1 677.9 42
82 208.3 | 396.8 | 580.3 733.0 40
83 220.1 | 430.5 | 636.6 662.2 55
84 221.1 434.6 565.7 719.4 46
85 221.4 | 433.5 | 562.4 709.7 54
86 219.2 | 429.7 | 633.2 828.7 62
87 220.7 | 4327 | 647.2 846.0 66
88 223.1 | 439.8 | 6024 777.2 88
89 220.5 | 435.7 | 646.9 852.4 79
90 2255 | 435.2 | 642.4 845.9 80
91 225.7 | 396.7 | 576.5 734.8 125
92 226.2 448.7 671.2 890.6 165
93 224.1 445.5 664.6 882.6 144
94 223.6 | 446.0 | 665.9 869.9 149
95 225.5 | 450.7 | 658.5 870.7 175
96 224.8 | 448.1 | 652.7 858.9 207
97 226.3 449.8 672.3 897.4 214
98 235.8 | 467.6 | 698.1 924.9 520
99 230.4 | 452.2 | 675.0 896.4 579
100 230.4 | 459.8 | 687.3 915.3 | 1300

ACKHNOWICURCILICIILS

Thanks to Tony Marsland for many valuable comments
and for visiting the PC? at the right time.

References

[Altmann et al., 1988] E. Altmann, T. A. Marsland, T.
Breitkreutz. Accounting for Parallel Tree Search Over-
heads. Procs. Int. Conf. Par. Proc. (1988), 198 — 201

[Chakrabrti et al., 1989] P.P. Chakrabarti, S. Ghose, A.
Acharya, S.C. de Sarkar. Heuristic search in restricted

memory. Art. Intell. 41,2(1989/90), 197 — 221.

[Evett et al., 1990] M. Evett, J. Hendler, A. Mahanti,
D.S. Nau. PRA*: A memory-limited heuristic search
procedure for the Connection Machine. 3rd TEEE
Symp. Frontiers Mass. Par. Comp. (1990), 145 — 149.

[Korf, 1985] R.E. Korf. Depth-first iterative-deepening:
An optimal admissible tree search. Art. Intell.

27(1985), 97 — 109.

[Kumar and Rao, 1990] V. Kumar, V.N. Rao. Scalable
parallel formulations of depth-first search. In: Ku-
mar, Gopalakrishnan, Kanal (eds.), Parallel Algo-
rithms for Machine Intelligence and Vision, Springer-

Verlag (1990), 1 — 41.

[Mahanti et al., 1992] A. Mahanti, S. Ghosh, D.S. Nau,
A K. Pal and L. Kanal. Performance of IDA* on trees
and graphs. 10th Nat. Conf. on Art. Int., AAAI-92,
San Jose, CA, (1992), 539 — 544.

[Mahanti and Daniels, 1993] A. Mahanti, C.J. Daniels.
A SIMD approach to parallel heuristic search. Art. In-
tell. 60(1993), 243 — 282.

[Morabito et al., 1992] R.N. Morabito, M.N. Arenales,
V.F. Arcaro. An and-or-graph approach for two di-
mensional cutting problems. European J. of OR

58(1992), 263 — 271.

[Newborn, 1988] M. Newborn. Unsynchronized itera-
tively deepening parallel alpha-beta search. 1EEE
Trans. Pattern Anal. Mach. Int., PAMI-10,9 (1988),
687 — 694.

[Nilsson, 1980] N.J. Nilsson. Principles of Artificial In-
telligence. Tioga Publishing, Palo Alto, CA, (1980).

[Pearl, 1985] J. Pearl. Heuristics. Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, Reading, MA, (1984).

[Powley and Korf, 1991] C. Powley, R.E. Korf. Single-
agent parallel window search. IEEE Trans. Pattern
Anal. Mach. Int., PAMI-13,5 (1991), 466 — 477.

[rowley et ai., lyso| L. Fowley, L. rerguson, .. KOrl.
Depth-first heuristic search on a SIMD machine. Art.
Intell. 60(1993), 199 — 242.

[Rao et al., 1991] V.N. Rao, V. Kumar, R.E. Korf.
Depth-first vs. best-first search. 9th Nat. Conf. on Art.
Int. AAAT-91, Anaheim, CA, (1991), 434 — 440.

[Rao and Kumar, 1987] V.N. Rao, V. Kumar. Parallel
depth-first search. Part I. Implementation. Int. J. Par.
Progr. 16,6(1987), 479 — 499.

[Ratner and Warmuth, 1986] D. Ratner, M. Warmuth.
Finding a shortest solution for the N x N extension
of the 15-puzzle is intractable. AAAI-86, 168 — 172.

[Reinefeld and Marsland, 1993] A. Reinefeld, T.A. Mar-
sland. Enhanced iterative-deepening search. Univ. Pa-
derborn, FB Mathematik-Informatik, Tech. Rep. 120
(March 1993), to appear IEEE-PAMI.

[Reinefeld, 1993] A. Reinefeld. Complete solution of the
Eight-Puzzle and the benefit of node-ordering in IDA*.
Procs. Int. Joint Conf. on AI, Chambéry, Savoi, France
(Sept. 1993), 248 — 253.

[Russell, 1992] S. Russell. Efficient memory-bounded
search methods. European Al-Conference, ECAI-92,
Vienna, (1992), 1 — 5.

[Wimer et al., 1988] S. Wimer, I. Koren, I. Cederbaum.
Optimal aspect ratios of building blocks in VLSL
Procs. 25th ACM/IEEE Design Automation Confer-
ence, 1988, 66 — 72.

