
AIDA� � Asynchronous Parallel IDA�

Alexander Reinefeld and Volker Schnecke

PC� � Paderborn Center for Parallel Computing

D������ Paderborn� Germany

farjossig�uni�paderborn�de

Abstract

We present AIDA�� a generic adaptable scheme

for highly parallel iterative�deepening search

on large�scale asynchronous MIMD systems�

AIDA� is based on a data partitioning scheme�

where the di�erent parts of the search space are

processed asynchronously in parallel� Existing

sequential solution algorithms can be linked to

the AIDA� routines to build a fast� highly par�

allel search program�

Taking the ���puzzle as an application domain�

we achieved an average speedup of ��	 on a

��
� processor system� corresponding to an ef�

�ciency of 	
� on Korf�s ��
��� 
� largest prob�

lem instances� Speci�c problem instances yield

more than 
�� e�ciency�

The total time taken by AIDA� to solve Korf�s

��� random puzzles on a ��
��node system was


��
 minutes� This is ��	 times faster than the

most e�cient parallel algorithm on a �
K CM�


 machine� SIDA� by Powley et al�

� Introduction

Heuristic search is one of the most important techniques

for problem solving in Arti�cial Intelligence and Opera�

tions Research� Since search algorithms usually exhibit

exponential run�time� and sometimes also exponential

space complexity� the design of e�cient parallel search�

ing methods is of obvious interest�

The backtracking approaches used in AI and OR ben�

e�t from a wealth of powerful heuristics that eliminate

unnecessary states in the search space without a�ecting

the �nal result� The most prominent methods include

the universal branch � bound technique and dynamic

programming� which examine only branches that are be�

low�above a current upper�lower bound on the solution

value� While these schemes are successfully applied in

many problem domains� they do not work in domains

with

� low solution density�

� high heuristic branching factor�

� poor initial upper�lower bounds on the optimal so�

lution value�

Typical examples include single�agent games like the

���puzzle �Korf� �
���� VLSI �oorplan optimization

�Wimer et al�� �
���� and some variants of the cutting

stock problem �Morabito et al�� �


�� For this kind of

applications� there exists a simple and e�cient back�

tracking method� called Iterative�Deepening A� �IDA��

�Korf� �
���� that performs a series of independent

depth��rst searches� each with the cost�bound increased

by the minimal amount�

In this paper� we present AIDA�� a parallel imple�

mentation of iterative�deepening search on a massively

parallel asynchronous MIMD system� AIDA� is based

on a data partitioning scheme� where the di�erent parts

of the search space are processed asynchronously by the

distributed processing elements� A simple� but e�ective

task attraction scheme combined with a weak synchro�

nization mechanism ensures high processor utilization

and good scalability for up to more than a thousand

processors�

Running on a ��
� processor transputer system� we

achieved a speedup of ��	 on twenty�ve problem in�

stances of the ���puzzle� corresponding to an e�ciency

of 	
�� Using Korf�s ��
��� random problem instances

as a benchmark suite� AIDA� runs more than �ve times

as fast as the fastest SIMD implementation� SIDA� by

Powley et al� ��

��� which was implemented on a CM�


with �
K processing elements� While such a compari�

son might seem unfair� because a single CM�
 processing

element is about ��� times slower than the T��� trans�

puters of our system� there are �
 times more process�

ing elements in the CM�
� Hence one would expect our



transputer program to run three times faster� However�

we achieved a time improvement by a factor of ��	� due

to faster work�load balancing and almost zero synchro�

nization costs�

In the following� we �rst discuss the basic ideas of

sequential IDA�� give a brief overview about previous

parallel approaches� and present the AIDA� algorithm�

Most of the paper is devoted to the discussion of our

empirical performance results� including an analysis of

the various overheads�

� Iterative�Deepening Search

Iterative�Deepening A� �IDA�� �Korf� �
��� performs a

series of independent depth��rst searches� each with the

cost�bound increased by the minimal amount� Following

the lines of the well�known A� heuristic search algorithm

�Nilsson� �
��� Pearl� �
���� the total cost f�n� of a node

n is made up of the cost already spent in reaching that

node g�n�� plus a lower bound on the estimated cost of

the path to a goal state h�n�� At the beginning� the cost

bound is set to the heuristic estimate of the initial state�

h�root�� Then� for each iteration� the bound is increased

to the minimumvalue that exceeded the previous bound�

as shown in the following pseudo code�

procedure IDA� �n��
bound �� h�n��
while not solved do

bound �� DFS�n� bound��

function DFS �n� bound��
if f�n� � bound

then return f�n��
if h�n� � �

then return solved�
return lowest value of DFS�ni� bound�

for all successors ni of n

With an admissible ��non�overestimating� heuristic

estimate function h� IDA� is guaranteed to �nd an

optimal �shortest� solution path �Korf� �
���� More�

over� IDA� obeys the same asymptotic branching fac�

tor as A� �Nilsson� �
���� if the number of newly ex�

panded nodes grows exponentially with the search depth

�Korf� �
��� Mahanti et al�� �


�� This growth rate� the

heuristic branching factor� depends on the average num�

ber of applicable operators per node and the discrimina�

tion power of the heuristic estimate h�

� Applications

Typical application domains for IDA� search include

VLSI �oorplan optimization� some variants of the cut�

ting stock problem and single�agent games like the ���

puzzle� These problems may be characterized by a high

heuristic branching factor� a low solution density and

poor information about bounds that can be used to

prune the search tree�

We tested the performance of our parallel AIDA� al�

gorithm on one hundred randomly generated problem in�

stances �Korf� �
��� of the ���puzzle� In its more general

n�n extension� this puzzle is known to be NP �complete

�Ratner and Warmuth� �
���� While exact statistics on

solving the smaller ��puzzle are known �Reinefeld� �

���

the ���puzzle spawns a search space of ����
 � ����

states� which cannot be exhaustively examined� Using

IDA�� an average of ��� node expansions are needed to

obtain a �rst solution with the popular Manhattan dis�

tance �the sum of the minimumdisplacement of each tile

from its goal position� as a heuristic estimate function�

� Parallel Approaches

Previous approaches to parallel iterative�deepening

search include parallel window searches� tree decompo�

sition� search space mappings and special schemes for

SIMD machines�

Powley and Korf ��

�� presented a Parallel Window

Search� where each processor examines the entire search

space� but with a di�erent cost�bound� Depending on

the application� this method works only for a hand full of

processors �e�g�� ��
 in �Powley and Korf� �

�� p� �	���

and the solution cannot be guaranteed to be optimal�

Kumar and Rao�s ��
�	��

�� parallel IDA� variant

is based on a task attraction scheme that shares sub�

trees �taken from a donator�s search stack� among the

processors on demand� For a selected problem set they

achieved almost linear speedups on a variety of MIMD

computers� These favorable results� however� apply only

for MIMD systems with small communication diameters�

like a �
� processor Intel Hypercube� a �� processor Se�

quent Balance and a �
� processor BBN Butter�y� On a

�
��node ring topology their algorithm achieved a maxi�

mum speedup of ��� From Kumar and Rao�s analysis� it

is evident that these results do not scale up to systems

of� say� some thousand processors�

The algorithm of Evett et al� ��

�� performs a map�

ping of the search space onto the processing elements of a

SIMD machine� This allows to eliminate duplicate states

at the cost of an increased communication overhead�

Two other approaches� SIDA� by Powley et al� ��

��

and IDPS by Mahanti and Daniels ��

�� also run on

the CM�
� From these� SIDA� is probably the fastest

parallel IDA� implementation� solving all ��� problem

instances �Korf� �
��� of the ���puzzle in 
�
�� hours�



�
�
�
�
�
�c
c
c
c
c
c � tinit

� tbase

base level for

load balancing

� � �
�
�� c

cc
ni
�

�� c
cc

np�i

�
�� c

cc
n�p�i

individual searches start here

�� Phase

�� Phase

�� Ph�

Figure �� AIDA� Algorithm Architecture

� AIDA�

In the following we describe AIDA�� a generic adapt�

able scheme for highly parallel iterative�deepening search

on asynchronous MIMD systems� AIDA� is based on a

data partitioning scheme� where the di�erent parts of

the search space are processed asynchronously by the

fastest available sequential routines running in parallel

on the distributed processing elements� Existing sequen�

tial search code can be adapted to the parallel AIDA�

system by linking the routines for initial tree partition�

ing� work�load balancing and communication� A sim�

ple� but e�cient task attraction scheme combined with

a �weak� synchronization mechanism ensures a high pro�

cessor utilization and good scalability up to some thou�

sand processors�

AIDA� consists of three phases �cf�� Fig� ���

� a short initial data partitioning phase� where all pro�

cessors redundantly expand the �rst few tree levels

in an iterative�deepening manner until a su�cient

amount of nodes is generated to keep each proces�

sor busy in the next phase�

� an additional distributed node expansion phase�

where each processor expands its �own� nodes of the

�rst phase to generate a larger set of� say� some

thousand �ne grained work packets for the subse�

quent asynchronous search phase�

� an asynchronous search phase� where the proces�

sors generate and explore di�erent subtrees in an

iterative�deepening manner until one or all solutions

are found�

None of these three phases requires a hard synchro�

nization� Processors are allowed to proceed with the

next phase as soon as they �nished the previous one�

Only in the third phase� some mechanism is needed to

keep all processors working on about the same search

iteration� However� this synchronization is a weak one

�as opposed to hard barrier synchronization�� allowing

the processors to proceed with the next iteration after

checking for work in their neighborhood only�

Similar to Newborn�s ��
��� unsynchronized iteratively

deepening parallel alpha�beta� each processor carries out

an iterative�deepening search on its selected subset of

nodes� Our work�load balancing scheme ensures that all

processors �nish their iterations at about the same time�

��� Phase �� Initial Data Partitioning

Before starting a distributed tree search� each proces�

sor must be supplied with a suitable amount of di�erent

nodes which can then be further expanded in parallel�

This could be achieved in logarithmic time� O�logP ��

on P processors� using a binary divide�and�conquer ap�

proach� However� since communication on a MIMD�

machine is usually an order of magnitude more time�

consuming than the node expansion costs�� AIDA� gen�

erates the �rst few tree levels redundantly on all pro�

cessors� In the ���puzzle� the processors perform an

iterative�deepening search� saving all nodes of the last

search frontier in a local node array� until there are at

least � �P entries� This gives a su�cient number of sub�

tree roots �some ������ nodes� while not over�owing the

memory resources of our transputer system�

At the end of this phase� duplicate nodes can be elim�

inated from the node array� In our experiments� how�

ever� we found that sorting the node array takes too

much time� A total of ��� removed duplicate nodes �cf�

�Powley et al�� �

��� at the end of this phase gave only

a ��� reduction of the total nodes� which did not pay

for the increased overhead�

In practice� the �rst phase is short� taking less than

three seconds �cf�� Fig� �� on the ��
��node system�

There is neither communication or synchronization in�

volved in this phase�

��� Phase �� Generating Fine Grained Work

Packets

In the second phase� processor Pi takes its nodes

ni� np�i� n�p�i� � � � from the frontier node array tinit to

get a wide�spread distribution of search frontier nodes�

The nodes are expanded by applying two IDA� itera�

tions� giving a new search frontier� tbase� as shown in

Figure �� At the end of the second phase� the local node

arrays of the individual processors contain about ����

frontier nodes each� These nodes make up the work pack�

ets used in dynamic load balancing in the third phase�

As before� there is neither synchronization nor commu�

nication involved in this phase�

�This is especially true for the �	
puzzle with its cheap

operator cost�



��� Phase �� Asynchronous Search with

Dynamic Load Balancing

The following iterations start on the frontier nodes tbase�

All processors expand the nodes of their local array up

to the current search�threshold� Since the size of the

subtrees emanating from the tbase nodes is not known a

priori� dynamic load balancing is required�

Our implementation of AIDA� employs a simple task

attraction scheme� The P � n� processing elements are

connected in a n � n torus topology �i�e� a mesh with

wrap�around links in the rows and columns�� Each pro�

cessor is a member of two rings with n elements� the

horizontal and the vertical ring�

A processor �rst expands its local frontier nodes of

level tbase� When running out of work� it sends a

work request in clockwise order along the horizontal

link of the torus� The �rst processor with unexpanded

frontier nodes in its array sends a work packet back to

the requester� If none of the processors on the horizon�

tal ring has work to share� the request continues its path

along the ring and eventually returns to the requester�

indicating that the current iteration run out of work on

this horizontal ring of the torus� The requester now

sends a work request along the vertical ring using the

same mechanism� If again no processor responds with

a work packet� an out of work message is sent on both

rings and this processor starts the next iteration� We

call this a weak synchronization � as opposed to a hard

barrier synchronization� It keeps all processors work�

ing at about the same iteration� while not requiring too

much idle time �Newborn� �
���� In practice� our weak

synchronization works much like a majority consensus

approach� When searching for a �rst solution� care must

be taken that all processors working on shallower iter�

ations �nish their search before returning the optimal

solution�

Note� that any work package is exclusively owned by

a single processor� Whenever a package is transferred to

another processor� it changes ownership� This is done

with the expectation that all subtrees grow at about the

same rate from one iteration to the next� Hence� the load

balance will automatically improve during the search� In

fact� the number of work packets decreases with increas�

ing search time �cf�� Fig� 	��

��� Implementation Details

While the above description gives a general outline of

the AIDA� scheme� the actual implementation is more

sophisticated�

� When a processor is done with its local nodes�

it can start a new iteration when it receives an

out of work message or detects a work request

with a higher cost threshold on the ring�

� To keep communication costs low� up to �ve nodes

are bundled in a work packet� To avoid the donator

from giving away all of its non processed nodes� only

half of these are transferred�

� At the end of each iteration the nodes in

tbase are re�ordered� � Medium size subtrees with

avg nodes�
 � x � 
 � avg nodes are sorted to

the end of the array� so that only work packets of

average size will be transferred to other processors�

� In the hard problems �with many iterations��

the size of work packets can di�er by an or�

der of magnitude� We therefore experimented

with node splitting and node contraction strategies

�Chakrabrti et al�� �
�
� to adjust the work packets

to an average size� Our preliminary results indicate

that the additional overhead does not pay o��

� Empirical Results

We implemented AIDA� on a ��
��node MIMD trans�

puter system� using the ���puzzle as a sample applica�

tion� Figures 
 and � show the speedup results for two

sets of 
� random problem instances with di�erent di��

culties� Speedup anomalies �cf� �Kumar and Rao� �

���

were avoided by searching all nodes of the last �goal� it�

eration� We call this the �all�solutions�case� as opposed

to the ��rst�solution�case�� where it su�ces to �nd one

optimal solution� Our �fty problem instances are the

larger ones from Korf ��
���� here sorted to the number

of node generations in the �all�solutions�case�� We also

run AIDA� on Korf�s �fty smaller problems� However�

with an average parallel solution time of � seconds� a

��
��node MIMD system cannot be su�ciently utilized�

so we did not include the data in this paper�

The speedup S of a parallel algorithm is measured as

the ratio of the time taken by an equivalent and most

e�cient sequential implementation� T ���� divided by the

time taken by the parallel algorithm� T �P ��

S�P � �
T ���

T �P �
�

Care was taken to use the most e�cient sequential

algorithm for comparison� Our IDA� is written in C and

generates nodes at a rate of ������ nodes per second

on a T��� transputer� corresponding to ������� nodes

per second on a SUN Classic Workstation� or �������

�This is just a partial re
ordering� not a total sort� Nodes

are sorted to the average size of all subtrees in the last iter


ation� avg nodes�



��
 �	� 	�� ��
 ����

Processors P

��
��


�	�

	��

��


����

S
p
e
e
d
u
p

S

��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
���
��
��
���
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
�����
����
����
����
����
����
����
����
����
����
����
���
����
����
����
����
����
����
����
����
����
����
����
����
����
���
����
�������
�����
������
������
�����
������
������
�����
������
������
������
�����
������
������
�����
������
������
�����
���� Sall sol

��
��
��
��
�
��
��
��
�
��
��
��
��
��
��
��
��
��
���
�
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
���
��
��
��
��
���
��
��
��
���
��
��
��
��
���
��
��
��
��
���
��
��
��
���
��
��
��
��
���
��
��
��
��
���
��
��
��
���
��
��
��
��
���
��
��
��
��
���
��
��
���
���
���
���
��
���
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
���
��
���
���
���
��
���
���
��
���
���
���
��
���
���
���
��
���
���
��
���
�����
����
����
����
����
����
����
�����
����
����
����
����
����
����
�����
����
����
����
����
����
�����
����
����
����
����
����
� Sreal

��
��
�
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
���
��
�
��
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
��
��
��
��
��
���
��
��
��
��
��
���
��
��
��
��
���
��
��
��
��
��
���
��
��
��
��
��
���
��
��
��
��
��
���
��
��
��
��
���
��
��
��
��
��
���
��
��
��
��
��
���
��
���
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
��� Sopt

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 
� Speedup� prob� �����	�

��
 �	� 	�� ��
 ����

Processors P

��
��


�	�

	��

��


����

S
p
e
e
d
u
p

S

��
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
���
��
���
��
��
��
���
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
���
���
��
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
��
���
����
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
���
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
� Sall sol

��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
���
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
���
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
���
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
� Sreal

��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
���
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
���
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�� Sopt

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure �� Speedup� prob� �	������

nodes per second on a SUN SparcStation ������ Similar

sequential IDA� run�times have been reported by Powley

et al� ��

���

Figures 
 and � show the performance results on a

torus topology� For each problem set� three graphs are

shown�

Sopt� The topmost graph shows the maximum

speedup that could be achieved with an opti�

mal parallel algorithm �with zero overheads�

after the �rst phase is done� This is a hy�

pothetical measure to show how much time is

taken by the initial data distribution phase�

Sreal� The middle graph shows the speedup that

would be obtained by a search for the �rst so�

lution� one that stops right after one solution

has been found� It includes the startup�time

overhead� the communication overhead due to

load balancing and the weak synchronization

between iterations of the third phase�

Sall sol� The bottom graph shows the actual speedup

�measured in terms of elapsed time� of the �all�

solutions�case�� Compared to Sreal� it also con�

tains termination detection overhead and idle

times due to processors which are done �too

soon� in the last iterations while others are still

working on their last subtree��

As is evident from Figures 
 and �� good speedups are

more di�cult to achieve for the small problem instances

�����	� than for the hard ones �	������� On the ��
��

node system� the small problems take only an average

of �� seconds to solve� while the more di�cult require

three minutes� Hence� the negative e�ect of the initial

work distribution� which is about constant for all prob�

lems� does not hamper the overall speedup in the hard

problems too much�

� Overheads in AIDA�

In this section� we analyze the various sources of over�

heads in more detail�

��� Initial Work Distribution

In the �rst phase� all processors perform a synchronous

iterative�deepening search on the �rst few tree levels�

storing all nodes of the last search frontier until there

are at least � � P nodes in each processor�s local node

array� This gives a su�cient number of work packets

while not over�owing the memory resources�

For the larger systems� more nodes must be generated

to give every processor a su�cient amount of �own� nodes

to work on� Hence� the CPU time spent in the �rst phase

increases linearly with the system size� as shown in Fig�

ure �� This additional node generation overhead does

not reduce the overall e�ciency of AIDA� in the large

problems �	������ too much� As shown in Figure �� less

than ���� of the total search time is spent in the �rst

phase� Only the small problems �����	� require up to

��� for the initial work�load distribution� This is just

another manifestation of Amdahl�s Law� The scalabil�

ity of AIDA� can be improved by reducing the size of

�While in the ��rst
solution
case� node expansion can be

stopped after a �rst solution is found� all processors must �n


ish searching their current subtree in the �all
solutions
case��

Due to di�erent work packet sizes� which vary most in the last

iteration� some processors might get idle while others are still

expanding their last tree� Most of the overheads in Sall sol

can be reduced by implementing a stack
splitting strategy as

in �Kumar and Rao� ������



��
 �	� 	�� ��
 ����

Processors P

��	

���

��	

���

��	

���

abs�
time
�sec�

�
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
���
�
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
����
��
���
��
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
��
���
���
��
���
�
��������

�
��
��
�
��
��
�
��

��
��
�
��
��
�
��
�

�
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
�
��
��
��
��
��

��
��
��
��
��
��
�

�
��
��
��
��
��
��

��
��
�
��
��
��
��

��
��
��
��
�
��
��

��
��
��
��
��
�
��

��
��
�
��
��
��
��

��
��
��
��
�
��
��

��
�
��
��
��
��
�
�

��
��
��
��
��
��
�

��
��
��
��
��
�� �	����	

Figure �� Absolute time of �rst phase

��
 �	� 	�� ��
 ����

Processors P

���

���

���


��

����

relat�
time
���

������������������������������������������
�������������������

�������������������
����������������

��������������������
����������������

����������������
����������������

�����������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
��������
�������
������
�������
������
�������
������
�������
������
������
�������
������
�������
������
�������
�� ��������

���
���
���
���
�

���
��
��
��
��
��

��
��
��
���
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
�
��
��
��
��
��

��
��
��
��
���
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

�
��
��
��
�
��
��
�

��
�
��
��
��
��
��

�
��
��
��
��
��
��

��
��
��
��
��
��
�

�	����	

Figure �� Time of �rst phase relative to

total search time

the �rst phase or by expanding di�erent subtrees on the

parallel processors in a divide�and�conquer approach�

Note� that in the second phase� every processor starts

node expansion on its own subtrees� thereby fully ex�

ploiting the parallel processing power�

��� Communication Overhead

Communication is another source of overhead hamper�

ing the performance of parallel algorithms� especially

those running on massively parallel systems� Fortu�

nately� AIDA� exhibits a very low communication over�

head� Starting with �� processors� one would expect

the communication rate to increase by a factor of six�

teen when increasing the system size to ��
� processors�

However� as can be seen in Figure �� the actual number

of messages increases only by a factor of six� The curves

seem to level o� with growing system size� which can be

explained by an increased likelihood that work requests

are answered in the immediate neighborhood of the idle

��
 �	� 	�� ��
 ����

Processors P

���

���

���

�mess

per

proc

��
��
��
��
��
��
��
��
��
��
��
��
���
���
����
���
���
����
���
���
����
���
���
����
���
�����
��
���
���
���
���
���
���
��
���
���
���
���
���
���
���
��
���
���
���
���
���
���
��
���
���
���
���
���
���
���
��
�����
�������
��������
�������
�������
�������
�������
�������
�������
�������
�������
�������
����������
���������
����������

���������
����������

���������
����������

���������
����������

���

work
mess�

�	������

��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
���
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
����
���
���
���
����
���
���
���
����
���
���
���
����
���
���
���
����
���
���
���
����
���
���
���
����
���
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
���

total mess�

�	������

Figure �� Messages per processor �last iteration only�

���

���

���

total
mess�

���

���

���

work

mess�

�st �nd �rd �th 	th

Iteration

Figure 	� Messages per iteration ���
� procs��

processor� As a consequence� the average distance be�

tween sender and receiver does not increase linearly with

the system size�

At the end of an iteration� only a single work request

is sent around the ring to indicate that there is no fur�

ther work available in the current iteration� All other

processors on the ring are informed by an out of work

message� They directly start the next iteration without

asking for further work�

Moreover� as shown in Figure 	 the communication

overhead seems to decrease with increasing search time�

This is because the transferred nodes change ownership

when being shipped to another processor� thereby con�

stantly improving the global work�load balance� The

number of messages that went through a single proces�

sor on a ��
��processor system decreases rapidly in the

last two iterations� Due to this e�ect� one can assume

an even lower communication overhead in other applica�

tions involving more iterations�

��� Termination Detection

With the weak synchronization scheme between the iter�

ations� special provision must be taken to ensure that the

returned solution is optimal in the ��rst�solution�case��

When a goal node is found in iteration i� all processors



working on iterations � i must complete their search to

prove that no better solution exists�

In the �all�solutions�case� �subject of this paper� the

last iteration is searched to completion until all proces�

sors examined all their assigned subtrees� Due to the

varying branching degree� the subtree sizes can hardly

be estimated in advance� This results in di�erent ter�

mination times for the parallel processors� As shown in

Figures 
 and � �compare the two bottom graphs Sreal

and Sall sol� the time spent in the �nishing phase is ap�

preciable� Note however� that this will usually not occur

in the search for one solution� a case� that is more im�

portant in practice�

	 Conclusions and Future Research

In this paper� we presented a universal scheme for

asynchronous parallel iterative�deepening search on mas�

sively parallel MIMD systems� Any sequential iterative�

deepening algorithm can be linked to our generic AIDA�

routines without much modi�cation� Compared to a

similar parallel MIMD scheme by Kumar and Rao ��

���

our method is more general and obeys less communica�

tion overhead� especially on MIMD systems with a large

diameter�

Moreover� AIDA� proved to be scalable for more than

one thousand processors with a high e�ciency�

For the ��rst�solution�case�� we solved Korf�s ��
���

hundred puzzle instances in 
� minutes� which is ��	

times faster than SIDA� �Powley et al�� �

�� running

on a �
K CM�
� Comparing SIDA��s theoretical speed

of �
K processors � �

 nodes�sec � ��� ���� 

�

nodes�sec for the whole system with AIDA��s theo�

retical speed of ��
� processors � ��� ��� nodes�sec

� ��� ���� ��� nodes�sec for our whole system� it is evi�

dent� that our MIMD approach makes better use of the

processors� This is a remarkable result� considering that

our faster machine solves the smallest 	� problems in less

than �� seconds each� Here� losses due to initialization

are most pregnant� On the other hand� it is a more am�

bitious task to keep all processors of a SIMD machine

working on relevant parts of the search space�

Our future work includes the solution of the �
�puzzle�

where all heuristics that are known up to date� must be

put together to obtain a solution within reasonable time

limits� At the present time� we have solved 
� smaller�

problems of ��� random �
�puzzle instances with an av�

erage runtime of �� minutes on the ��
� processor sys�

tem� VLSI �oorplan optimization �Wimer et al�� �
��� is

�avg� values� Manhattan distance h � ��� solution path

length g � ���	� ���
 iterations� 	��� billion nodes

another practical application� which we intend to solve

with AIDA��

Appendix
 All�Solutions�Case Data

Speedup Time
Prob�

S��	�� S�	��� S���
� S������ T������

�� ����� 
	��
 ����� ��
�� ��
�
 �
��
 ����� �

�� ����
 ��
�� 
�
�	 �
��	 ��
�
 ����� ��
�� �
��� ����� ��
�� �
��
 

�� 
���� ��
�
 ����
 ��
�� ��
�� �
��
 ����� ����� �
	�
 ��
�	 ����� ����� �	��� ����� ��
�� 
���� ����� ����
 ����
 ��
�
 
���� ����� ����� ����� �

�� 
���� ����� �		�
 ����� ��
�� �
��� ����
 �
��� ��
�� 
�
�
 

��
 �
��� ��
�
 	�	�� ��
�� 
���� ��
�� �

�� ����� ��
�� 
���� ����� ��	�� ����� ��
�� 
���� ����� �	��� 	
��
 ��
�� 
���� ��	�
 ��
�� ����� ��
�	 
���
 ����� �	��� �	
�� ��
�� 
�
�
 �

�� �	��� 	���� �	
�
 
���� ����� �
��� 	�
�
 ��
	� 
���
 ����
 �

�� ����
 
�
	� 
���
 ��
�
 �
��
 ����� 
�
	
 
�
�� �
	�� �
��� ����� 
�
	� 

��� ����� �	��� 	���� 
�
	� 


�� ����� ��
�� 	���� 
�
	� 


�� ��
�� ����� ��
�� 
�
	� 

��� �
��� �
��� ����
 
�
		 
���� �
��� �
��� ����� �

	� 
���� ����	 �

�	 		��� ��
	
 


�� ����
 ����� ����� �	
�� 

��� �
	�� ��
�� 	�	�� ��
�� 

��� ����� ��	�� �		�
 �

�
 
���� �
��� ����� 	���� ��
�� 

��� ����� ����� ��
�
 ��
�� 

��� ����� ����	 	�
�� ��
�� 

��� ����� ��
�� 	�
�	 ��
�� 
�
�
 �

�	 ����
 �
��	 �

�	 

��	 ��
�	 ��	�
 ����� ��
�� 

��� ��
�� ��
�� 			�
 ��
�
 

��� ����	 ����
 ��
�� 	


� 

��� ����
 ��
�� ����
 ��

� 

��	 �
��	 �	��� 	���� �
�


 

��
 ����	 �	��
 �
��� ���

� 

��� ����� ����� ��
�� ���

� 

��� ����� ����
 ��
�
 ��


� 

��� ����	 ����� �	��	 �	�

� 

��� ����� ��
�	 ����
 
�	

	 

��� ��
�� �	
�� �
	�� 
��

� 
���� ��	�� �
��� 

��
 �
�


 
���� ��
�
 �	��� �
��� �	

��� 
���� ��
�� ��	�� 
���� ����



Acknowledgements

Thanks to Tony Marsland for many valuable comments

and for visiting the PC� at the right time�

References

�Altmann et al�� �
��� E� Altmann� T� A� Marsland� T�

Breitkreutz� Accounting for Parallel Tree Search Over�

heads� Procs� Int� Conf� Par� Proc� ��
���� �
� � 
��

�Chakrabrti et al�� �
�
� P�P� Chakrabarti� S� Ghose� A�

Acharya� S�C� de Sarkar� Heuristic search in restricted

memory� Art� Intell� ���
��
�
�
��� �
	 � 

��

�Evett et al�� �

�� M� Evett� J� Hendler� A� Mahanti�

D�S� Nau� PRA�	 A memory�limited heuristic search

procedure for the Connection Machine� �rd IEEE

Symp� Frontiers Mass� Par� Comp� ��

��� ��� � ��
�

�Korf� �
��� R�E� Korf� Depth��rst iterative�deepening	

An optimal admissible tree search� Art� Intell�


	��
���� 
	 � ��
�

�Kumar and Rao� �

�� V� Kumar� V�N� Rao� Scalable

parallel formulations of depth��rst search� In� Ku�

mar� Gopalakrishnan� Kanal �eds��� Parallel Algo�

rithms for Machine Intelligence and Vision� Springer�

Verlag ��

��� � � ���

�Mahanti et al�� �


� A� Mahanti� S� Ghosh� D�S� Nau�

A�K� Pal and L� Kanal� Performance of IDA� on trees

and graphs� ��th Nat� Conf� on Art� Int�� AAAI�

�

San Jose� CA� ��


�� ��
 � ����

�Mahanti and Daniels� �

�� A� Mahanti� C�J� Daniels�

A SIMD approach to parallel heuristic search� Art� In�

tell� ����

��� 
�� � 
�
�

�Morabito et al�� �


� R�N� Morabito� M�N� Arenales�

V�F� Arcaro� An and�or�graph approach for two di�

mensional cutting problems� European J� of OR

����


�� 
�� � 
	��

�Newborn� �
��� M� Newborn� Unsynchronized itera�

tively deepening parallel alpha�beta search� IEEE

Trans� Pattern Anal� Mach� Int�� PAMI����
 ��
����

��	 � �
��

�Nilsson� �
��� N�J� Nilsson� Principles of Arti�cial In�

telligence� Tioga Publishing� Palo Alto� CA� ��
����

�Pearl� �
��� J� Pearl� Heuristics� Intelligent Search

Strategies for Computer Problem Solving� Addison�

Wesley� Reading� MA� ��
����

�Powley and Korf� �

�� C� Powley� R�E� Korf� Single�

agent parallel window search� IEEE Trans� Pattern

Anal� Mach� Int�� PAMI����� ��

��� ��� � �		�

�Powley et al�� �

�� C� Powley� C� Ferguson� R�E� Korf�

Depth��rst heuristic search on a SIMD machine� Art�

Intell� ����

��� �

 � 
�
�

�Rao et al�� �

�� V�N� Rao� V� Kumar� R�E� Korf�

Depth��rst vs� best��rst search� 
th Nat� Conf� on Art�

Int� AAAI�
�� Anaheim� CA� ��

��� ��� � ����

�Rao and Kumar� �
�	� V�N� Rao� V� Kumar� Parallel

depth��rst search� Part I� Implementation� Int� J� Par�

Progr� ������
�	�� �	
 � �

�

�Ratner and Warmuth� �
��� D� Ratner� M� Warmuth�

Finding a shortest solution for the N � N extension

of the 
��puzzle is intractable� AAAI���� ��� � �	
�

�Reinefeld and Marsland� �

�� A� Reinefeld� T�A� Mar�

sland� Enhanced iterative�deepening search� Univ� Pa�

derborn� FB Mathematik�Informatik� Tech� Rep� �
�

�March �

��� to appear IEEE�PAMI�

�Reinefeld� �

�� A� Reinefeld� Complete solution of the

Eight�Puzzle and the bene�t of node�ordering in IDA��

Procs� Int� Joint Conf� on AI� Chamb�ery� Savoi� France

�Sept� �

��� 
�� � 
���

�Russell� �


� S� Russell� E�cient memory�bounded

search methods� European AI�Conference� ECAI�

�

Vienna� ��


�� � � ��

�Wimer et al�� �
��� S� Wimer� I� Koren� I� Cederbaum�

Optimal aspect ratios of building blocks in VLSI�

Procs� 
�th ACM�IEEE Design Automation Confer�

ence� �
��� �� � 	
�


