Proceedings ICNN'95, 27 Nov — 1 Dec 1995, Perth, WA, Vol 2, pp. 1028-1031, IEEE 1995

Short Term Prediction of Sales in Supermarkets

Frank M. Thiesing, Ulrich Middelberg, Oliver Vornberger
Department of Mathematics/Computer Science
University of Osnabruck
D-49069 Osnabruck, Germany

frank@informatik.uni-osnabrueck.de

ABSTRACT

In this paper artificial neural networks are applied to a short term forecast of the sale
of articles in supermarkets. The times series of sales, prices and advertising campaigns are
modelled to fit into feedforward multilayer perceptron networks that are trained by the back-
propagation algorithm. Several net topologies and training parameters have been compaired.
For enhancement the back-propagation algorithm has been parallelized in different manners.
One batch and two on-line training algorithms are implemented on parallel systems with both
the runtime environments PARIX and PVM. The research will lead to a practical forecasting

system for supermarkets.

1. Introduction

Time series prediction for economic processes is a
topic of increasing interest. In recent years artifi-
cial neural networks have been applied to this prob-
lem successfully [4], especially in the financial field.
Neural networks can be used easier for the predic-
tion of chaotic and noisy time series than statistical
methods because they are able to learn the system
dependencies on their own.

In order to reduce stock-keeping costs, a proper
forecast of the demand in the future is necessary.
In this paper we use feedforward multilayer percep-
tron networks for a short term forecast of the sale
of articles in supermarkets. The nets are trained
on the known sales volume of the past for a certain
group of related products. Additional information
like changing prices and advertising campaigns are
also given to the net to improve the prediction qual-
ity. The net is trained by the back-propagation al-
gorithm [2] on a window of inputs describing a fixed
set of recent past states. For enhancement the al-
gorithm is implemented on parallel systems.

2. Sale forecast by neural networks

In our project we use the sale information of 53
articles of a certain product group in a supermarket.
The information about the number of sold articles
and the sales revenues in DM (German currency
unit) are given weekly starting September 1994. In
addition there are advertising campaigns for articles
often combined with temporary price reductions.
Such a campaign lasts about two weeks and has a
significant influence on the demand on this article.

Sale, average price and advertising campaigns for a
specific article are shown in figure 2.

input hidden output
(t-n)
(t2) ®
(t-1)
past presence  future
1

Fig. 1: feedforward MLP for time series prediction

We use feedforward multilayer perceptron
(MLP) networks with one hidden layer together
with the back-propagation training method [3]. In
order to predict the future sale the past informa-
tion of n recent weeks is given in the input layer.
The only result in the output layer is the sale for
the next week. So there is a window of n weeks in
the past and one in the future (see figure 1).



article: 362238, prediction with net 424:70:1 for week 25/1995

T T T T T T T T T T T
35  maximum sale: 30
average sale: 10.36
variance of sale: 5.78
prediction error (RMS): 0.47 of 9 ( 5.19%)
30 .
25
w
8 20
2 M
& —
© .
= .
» 15 | ey R e e
10 H [ ]
5 -
| | | | | | | |

sale of article 362238 ——
price ----
advertising campaign <
training + forecast -

36 38 40 42 44 46 48 50 52 2 4

6 8 10 12 14 16 18 20 22 24

weeks 1994 to 1995

Fig. 2: sale and prediction for an article with advertising

3. Preprocessing the input data

An efficient preprocessing of the data is necessary
to input it into the net. Due to our implementation
of the back-propagation algorithm all information
must be scaled to [0, 1]. We assume that the nec-
essary information is given for T weeks in the past.
With the following definitions

ADV} = number of advertising days
for article ¢ within week ¢
SAL! = sale of article i within week ¢
MAXSAL; := max {SALE}
1<e<T

we have decided to use the following inputs for each
article ¢ and week ¢:

dot = ADV{  (normalized number of adver-
acv; = 6 tising days within week ¢ )
. 1.0 price Increases within
pri; = 0.5 : price keeps equal
¢ . week ¢
0.0 : price decreases
SALt
sall = ——— .08

: MAXSAL:

For each article 7 and recent week ¢ we use the
three-dimensional vector:

vech = (advf,priﬁ, salf)
For a week t in the future the vector is reduced by

the unknown sale:
~t ( d t ~t>
vee; := (adv;, pri;

To predict the sale for one article within a week ¢,
we use a window of the last n weeks. So we have
the following input vector for each article 2:

inputt = (vecf_", vecz_"‘l'l, . vecf_l, v/e\cf)
We have quite a constant sales volume of all prod-
ucts, because all the considered articles belong to
one product group. An increasing sale of one article
in general leads to a decrease of other sales. Due
to this, we concatenate the input vectors of all p
articles to get the vector given to the input layer:

INPUT! = (inputtl, inputh, ..., input;)

The sale of article i within week ¢ (sall) is the re-
quested nominal value in the output layer that has
to be learned by one net for this N PUT" vector.



So we have p nets where the i-th net adapts the sale
behaviour of article ¢. Therefore we have a training
set with the following pairs (see figure 1):

(INPUT!, salt) withn <t < T
To forecast the unknown sale salZ»T‘i'1 for any article
¢ within a future week 7'+ 1 we give the following
input vector to the trained i-th net:

INPUTTH!

The output value of this net is expected to be the
value saliT'i'l, which has to be re-scaled to the value
for the sale of article ¢ within week 7"+ 1:

sal] 71 MAXSAL;
0.8

SALTH =

4. Empirical results

To determine the appropriate configuration of the
feedforward MLP network several parameters have
been varied:

1. time window: n = 2 resp. n = 3

2. the number of hidden neurons: 11—2 resp. % of
the number of input neurons

3. training rate and momentum

We are using the information of 53 articles in
the input layer. The topology of the net is de-
scribed by the syntax: (input neurons:hidden
neurons:output neurons).

article 362238

0.08 - . . . . . .
424:70:1 training set ——
0.07 | 424:70:1 test set - 1
: 583:100:1 training set
§ 006 - :‘ 583:100:1 test set
S :
<4 0.05 1
I
>
& 004 ]
c
g
c 0.03 1
°
o 0.02 1
0 L ey v L L L
0 100 200 300 400 500 600 700 800 900 1000

epochs

Fig. 3: error during training

The given data is split into a training set (week
36/1994 to week 24/1995) and a test set (week
25/1995). The test set is not trained and only con-
sidered to check whether the net has generalized the
behaviour of the time series. With n = 2 we have
39 pairs in the training set and one in the test set,

with n = 3 we have 38 pairs in the training set and
one in the test set.

Several experiments have led to a training rate
of 0.25 and a momentum of zero that are best for
training and prediction.

Figure 3 shows the root mean square error on
the training and test set for n = 2 resp. n = 3,
while learning 1000 epochs of the time series for the
article in figure 2 with this parameter settings. The
error 1s going down immediately on the training set,
especially for the larger nets.

More important is the error on the test set —
the prediction error. This is better for the net with
n = 2. It needs more epochs to learn the rule of the
time series, but can generalize its behaviour better.

The prediction error of the net 424:70:1 in
means of sales can be seen from figures 2, too. For
the week 25/1995 the forecasted sale is drawn dot-
ted: the error is smaller than one piece.

The time for training the nets on a sequential

SUN SPARC 20 can be seen in table 1.

Table 1: training times on SPARC 20-50MHz

net n # training time for
topology pairs 1000 epochs
424:35:1 | 2 39 489 sec
424:70:1 | 2 39 1018 sec
583:50:1 | 3 38 907 sec
583:100:1 | 3 38 1815 sec

5. Parallelization

For enhancement the back-propagation algorithm
has been parallelized in different manners: First
the training set can be partitioned for the batch
learning implementation. The neural network is
duplicated on every processor of the parallel ma-
chine, and each processor works with a subset of
the training set. After each epoch the calculated
weight corrections are broadcasted and merged.
The second approach is a parallel calculation of
the matrix products that are used in the learning
algorithm. The neurons on each layer are parti-
tioned into p disjoint sets and each set is mapped
on one of the p processors. After the calculation of
the new activations of the neurons in one layer they
are broadcasted. We have implemented this on-line
training in two variants: For the first paralleliza-
tion of Morgan et al.[1] one matrix product is not
determined on one processor, but it 1s calculated



batch learning

24 ~
E J
speed-up for PARIX -7
16 7
4
Ve
AR .
s
7
8 —]
Va
4 —]
9 speed-up for PVM
i T T 1
12 4 8 16 32
number of nodes
on-line training PARIX
12
8 speed-up for Yoon et.al.
- — —=
/
4 Y
speed-up for Morgan et.al.
2 —]
i T T 1
12 4 8 16 32

number of nodes

Fig. 4: Speed-ups for GC/PP with PowerPC CPUs

while the subsums are sent around on a processor
cycle. The second method of Yoon et al.[5] tries to
reduce the communication time. This leads to an
overhead in both storage and number of computa-
tional operations.

All parallel algorithms are implemented on
PARSYTEC multiprocessor systems based on Trans-
puters and PowerPC processors using the message
passing environments PARIX and PVM. The mea-
surements took place on a GC/PP at the University
of Paderborn, Germany. The speed-ups for parallel
training are shown in figure 4.

One can see that the parallelization of the batch
learning scales very good. Concerning the on-line
training the parallelization of Yoon outperforms
Morgan’s parallelization a little bit. For 32 proces-
sors these parallelizations do not scale anymore be-
cause of their enormous communication demands.

6. Conclusions and future research

It has been shown that feedforward multilayer per-
ceptron networks can learn to approximate the time
series of sales in supermarkets. For a special group
of articles neural networks have been trained to
forecast future demands on the basis of the past
data. To improve the prediction quality we use ad-
ditional price and advertising information. Thereby
the prediction accuracy is sufficient.

The time consuming back-propagation learning
has been parallelized and so accelerated signifi-
cantly. The necessary training for prediction has
been reduced to an acceptable value.

Another approach in order to reduce training
time is to minimize the number of input neurons.
By correlation analysis we want to find out only
the relevant time series that have to be taken into
consideration.

For the future the modelling of the input vec-
tors should be improved in order to minimize the
prediction error: especially season and holiday in-
formation have to be given to the net; the value of
changing prices can be modelled quantitatively.

The aim of our research is to develop a fore-
casting system for supermarkets. This system will
reduce stock-keeping costs by flexible adaptability
to changing circumstances.

References

[1] N. Morgan, J. Beck, P. Kohn, J. Bilmes,
E. Allman, J. Beer. The Ring Array Proces-
sor: A Multiprocessor Peripheral for Connec-
tionist Applications. Journal of Parallel and
Distributed Computing 14, pp. 248-259, Aca-
demic Press Inc., 1992.

[2] D.E. Rumelhart, G.E. Hinton, R.J. Williams.
Learning internal representations by error prop-
agation. In D.E. Rumelhart and J.L. McClel-
land (Eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cogni-
tion, Vol. 1, pp. 318-362, MIT 1987.

[3] Z. Tang, P.A. Fishwick. Feed-forward Neural
Nets as Model for Time Series Forecasting.
TRI91-008, University of Florida, 1991.

[4] V.R. Vemuri, R.D. Rogers. Artificial Neural
Networks — Forecasting Time Series. IEEE
Computer Society Press 5120-05, 1994.

[5] H. Yoon, J.H. Nang, S.R. Maeng. A distributed
backpropagation algorithm of neural networks
on distributed-memory multiprocessors. Pro-
ceedings of the 3rd symposium on the Frontiers
of Massively Parallel Computation, pp. 358-363,
IEEE 1990.



