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Abstract. The parimod system is a Transputer based graphics system with an additional
interactive solid modeling tool for fast rendering of arbitrary 3-dimensional scenes. It
consists of an input tool, a calculation and an output unit which are independent of each other
so that each of them is replaceable if changes in hard or software come through.
The input unit is a X based solid modeling tool allowing the user to define scenes like an
architect on his drawing board. With the massively parallel rendering tool, the user sees the
defined scenes in various qualities on-line on the true color output device. The fast output is
achieved by the implementation of different parallel strategies of well-known shading and
rendering algorithms.
The quick response time between changing and showing the different views of a scene makes
parimod very popular in the application fields of architectural drawings or the visualization
of molecules.

1. Introduction

The research area of computer graphics has grown dramatically through the last decade. It is
amazing to see how computers produce photorealistic images that cannot be distinguished
from real pictures only by doing arithmetic calculations [Fol90], [Wat89].

For calculating such images in a reasonable amount of time several hard or software
approaches have been made during the last years. Specific hardware has been built for
solving the rendering equation rapidly, but for practical use these hardware solutions are too
expensive. On the software side the developers have produced many ideas to increase the
quality of the images, but the basic ideas like Gouraud or Phong shading [Gou71], [Pho75],
Ray Tracing [Gla89] and Radiosity [Gor84] haven’t changed much.

With our approach we’ve tried to show another way using common available hardware for
solving well-known shading and rendering algorithms in a massively parallel way only in
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software. By using parallel algorithms we are able to calculate photorealistic images as fast
as specific hardware solutions but staying in a good price/performance ratio. Therefore, our
parallel computer graphics and interactive solid modeling system, abbreviated as parimod, is
a Transputer based graphics system with an additional interactive solid modeling input tool
for fast rendering of arbitrary 3-dimensional scenes. The input tool, the calculation and the
output units are modular and communicate via special protocols so that each of them is
replaceable. On the other side it is possible to adapt some parts of parimod to existing
software systems, to speed up their runtime and to make the creation of scenes more straight
forward.

With the help of the interactive solid modeling system, which is written in C and runs
under X [ORe90a/b], the user can create or modify arbitrary 3-d scenes interactively on the
screen only by using the mouse. The scenes can be constructed with basic solids, for example
boxes, spheres, cylinders, etc. To define a 3-d scene on a 2-d screen the user sees, like an
architect, the ground plan and the front view of the scene. Additionally the complete
illumination of the scene (ambient, specular, diffuse, spot light sources), the different view
angles, all surface properties (color, reflection, refraction, material), the choice of the
rendering quality (wireframe, Flat, Gouraud, Phong shading, Ray Tracing or Radiosity) and
all other properties which are necessary for the definition of a 3-d scene can be defined with
this tool. After the description is finished, the parameters of the scene are sent to the
Transputers. During the calculation of the 3-d image the user can prepare a new scene or
modify the current one, for example by changing the view. This is possible because of the
device independency of the solid modeling tool. It can be used from different terminals
whereas the calculation and the output of the scenes are made on other machines.

The parallel processing unit, which is the other main component of parimod, consists of a
T800 multiprocessor system with up to 64 Transputers [Inm89] for which we have developed
parallel algorithms, all written in occam2 [Bur88], [Inm88], for the fast calculation of the
scenes in the above mentioned modes. The scenes are displayed on a true color, Transputer
based Graphical Display System (GDS) [Par90]. To achieve a high performance for
calculating 3-d images in software we had to develop good load balancing and routing
strategies for the Transputer system. We’ve made several approaches with different
topologies, algorithms and strategies [Gre91], [The89].

The rest of this paper is organized as follows. In Section 2 a detailed description of the
facilities of the solid modeler is given. An overview about the parallel rendering algorithms,
the used topologies, load balancing and routing strategies is given in Section 3. To see how
the different components work together Section 4 shows the complete system, some examples
and a performance overview. Finally, concluding remarks in conjunction with our further
research plans are presented in the last Section.

2. The interactive solid modeler (ism)

For the construction of arbitrary 3-dimensional scenes parimod has a front-end, named ism
(interactive solid modeler). It is a C program which runs under X. This has the advantage of
device independency and therefore ism can run on any X-terminal independently of the
Transputer back-end.

The main problem of constructing 3-dimensional scenes on a 2-dimensional display is to
show the user an impression of how his construction will look. This problem can be solved



by defining the ground plan and the front view of the scene. Therefore ism can be seen as an
interactive architectural drawing board in which the user can easily define his drawings only
by using the mouse [Boy82], [Män82]. Screendump 2.1 gives an overview about the layout
of ism as the user sees it on the screen.

Screendump 2.1: screendump of the application ism

On the left side of this screendump the front view of a living room example can be seen.
In the upper right corner ism shows a complete technical overview about the example. Here
the user can see of how many objects his scene consists. Individual object descriptions are
presented in one of the windows by clicking the object on the left drawing screen.
Informations about the size and the orientation of this object within the scene are shown.

But for the construction of arbitrary scenes the user needs a building box consisting of
several basic solids [Req80]. These basic solids are hidden behind the buttons on the bottom
and right side of the application. The solid building box consists of boxes, cubes, ellipsoids,
spheres, cylinders, toruses, pyramids, cones and the well-known Utah teapot [Cro87]. Every
object is created by clicking the object button, moving the mouse on the drawing screen



where the object should be placed and after another click by resizing the object on the
drawing screen. After this creation the user can modify, move or resize the object whenever
he wants. All these operations are implemented with the well-known rubberbanding and
handle techniques [Boy82], [Män88], [Mor85]. With these quick object changing techniques
the user is encouraged to produce different views or object sizes by playing with the mouse.

To see these results, a constructed scene needs some more definitions like eye and
viewpoint and also light sources have to be defined. The eye and viewpoint are created by
system default, but can be moved over the screen with the mouse when the user wishes. This
facility can be used as a first step of a walk through animation. All objects can only be seen
if the user has placed some light sources into the scene. ism gives the user three different
kinds of light sources: point lights, infinite light and spot lights. The general ambient light
can be defined for the whole scene within the scene properties. For the definition and the
behavior of light ism uses the PHIGS-PLUS standard [How91]. In Screendump 2.1 for
example two spot lights are defined. One can see the numbered symbols of source and
destination of these lights.

Screendump 2.2: eligible scene properties

After the definition of the geometrical properties the user has to define the object and
scene properties. Screendumps 2.2 and 2.3 show that nearly all attributes can be defined with
the sliders. We have chosen the basic properties, known from computer graphics, to have a
toolkit for the main rendering algorithms. The user can, for example, define diffuse and
specular object color, specular, ambient and diffuse object reflectance, object rotations
around the three axes, general refraction and reflection, light source intensity with spread
angle, etc. For defining the necessary object properties the PHIGS-PLUS standard helps us



here too. All these properties are initialized with values which are well defined so that
everything works fine even if the user has forgotten to define a certain object property or
doesn’t want to define all properties by himself.

Screendump 2.3: eligible light and object properties

The possible choice of scene properties are shown in Screendump 2.2. Here the rendering
quality of the scene can be defined. For a fast preview wireframe or flat shading are
sufficient. Better results concerning the photorealistic outlook of the scene can be achieved
by using Gouraud or Phong shading. For producing the final image the Ray Tracing or
Radiosity method can be chosen. Some other properties which can be defined, are the
selection of the background color, the kind of projection, the view angle, etc.

It is beyond of the scope of this paper to describe all properties which can be chosen for
objects and scenes here in detail. We refer interested readers to have a close look to the
screendumps and to [Fol90], [Wat89].

However, two other facilities of ism are very important and should be mentioned here.
Arbitrary objects, different from the basic objects, can be produced by using the ism splitting
plane. With this splitting plane objects can be divided into different pieces or volumes
respectively. The user only has to define the orientation of the splitting plane normal and the
object which should be divided. After pushing the split button two new objects are created.
The algorithm for splitting objects can be found in [Män88]. The splitting plane is the first
step for the implementation of boolean operators like union or intersection of arbitrary
objects. These boolean operations are not implemented yet and a goal for further research.

Another important button is the Transputer button which only can be used if ism is
combined with the parallel computer graphics back end. If the user wants to see the rendered
results of his scene constructed with ism he only has to push the Transputer button. Then the



scene description embedded in a special protocol is sent to the Transputers and rendered in
parallel. The parallel rendering and the used hardware configuration are described in the
following sections. During the parallel rendering calculations the scene can be modified by
the user so that the user can interactively walk through the scene, change object colors or
sizes or something else. Every scene description can be saved in a special file description
which is an extension to the neutral file format (nff) by Eric Haines [Hai87]. This file format
contains all information about the scene and can be loaded again into ism or used by other
graphics back ends.

3. Parallel computer graphics

3.1. Sequential viewing pipeline

For the description of the parallel rendering algorithms it is necessary to give a brief
overview about the classic viewing pipeline which the objects have to pass through for
converting a numerical scene description to a 3-dimensional picture.

For every object type a prototype is stored in its own model coordinate system. Starting
from this prototype description, each appearance of this object type in the scene can be
constructed with one 4×4-transformation matrix in which operations like scaling, rotation,
etc. are hidden. These transformation informations are stored in the ism description file. For
algorithms like Ray Tracing or Radiosity, where the objects are not transformed through the
viewing pipeline, it is sufficient to store the coordinates of the objects in world coordinates.
In the ism description format this information is also stored.

The second step in the viewing pipeline is the division of the objects into small triangles
for which all further operations are performed. After the coordinate transformation of the
modeling coordinate system into the normal projection coordinate system a hidden surface
removal and a view volume clipping are performed. Only triangles which lie in the view
volume and therefore are visible, are sent further through the pipeline. For rendering the
triangles, their coordinates are transformed into the world coordinate system and afterwards
the lighting is added. For the final step the coordinates are transformed from 3-dimensional
world coordinates into 2-dimensional device coordinates. Here the time-consuming shading
takes place. For this operation the well-known z-buffer technique is used [Fol90]. After
rendering the visible triangles into the z-buffer the image can be shown on the output device.

From this brief description of the viewing pipeline it can be seen that the different steps
are independent of each other, the small triangles can be rendered independently into the z-
buffer, and that the z-buffer is a large collection of independent screen pixels. If so many
things are independent there are a lot of possibilities for parallel rendering strategies.

3.2. Parallel viewing pipeline

To map the different viewing pipeline steps to different Transputers is the first idea that
comes to mind, but it is not a good choice because much of the time for the image production
is used for the shading of the triangles and a pipeline can only be as fast as its slowest
processor. So some alternative ideas must be found.



3.3. Parallel screen

To avoid the pipeline bottleneck it is necessary to distribute the large z-buffer among the
network processors. This can easily be done by dividing the view plane and the z-buffer
respectively into a large number of small rectangles, the so called subproblems. These
subproblems, specified only by their x-y-coordinates and x-y-sizes, are distributed to the
processors and every processor has to render the view with regard to its subproblem. The
information about the unsolved subproblems runs through the network and whenever a
processor becomes idle it can choose one subproblem from the list of unsolved problems. In
Figure 3.1 a scheme of this idea is shown. For the fast distribution of the unsolved
subproblems it is useful that a Hamiltonian circuit can be embedded into the topology.
Therefore we connected our Transputers like a de Bruijn network. These networks have
many advantages, especially for Transputers, but are not well known in the Transputer
community and therefore a little description of de Bruijn networks is given later in this
section.
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Figure 3.1: distribution of subproblems between Transputers

This parallelisation of the screen into small z-buffers guarantees a very good load
balancing in the network. The smaller the subproblems are, the better the load in the network
is balanced. Contrarily the smaller the subproblems are, the more work is duplicated because
for each subproblem a lot of preprocessing (object generation, hidden surfaces, clipping, etc.)
has to be done since the processors have no information about which object lies in their little
part of the viewplane. They have to generate the whole scene for every subproblem like in
the sequential case, but after clipping only a small part of the scene has to be rendered. This
causes a sequential overhead in the network. For making this parallelisation as fast as
possible a good ratio between subproblem size and network load has to be found. In Section
4 some experimental results of this parallelisation strategy are shown for several pictures.

3.4. Parallel objects

This strategy should avoid the duplication of work for the processors. Therefore every
processor is again responsible for a fixed part of the z-buffer, however, the construction of
the scene is done globally by a special processor, called the master processor. This master
processor splits every object of the scene into its small triangles and afterwards these small



rendering atoms are distributed to the slave processors which are responsible for rendering
the atoms into their z-buffer. Figure 3.2 gives an overview of this idea. It can be seen from
this figure that it is possible that one triangle is sent to more than one slave processor. If the
master processor detects such triangles they are sent to all of the processors which are
responsible for a piece of the z-buffer one triangle belongs to. With this idea nothing of the
scene construction and rendering work is done twice, but other problems arise. How to
distribute the z-buffer among the processors so that the workload is even or how to code the
triangle messages to avoid communication overhead?
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Figure 3.2: one triangle and its rendering Transputers

The termination of the algorithm and the display of the rendered image are additional
problems. Whereas in the above parallelisation all processors can send their finished
subpictures to the screen at once and the user can see how the final image is built together by
the subpictures like a puzzle, in this parallelisation every processor has to wait until the last
triangle is distributed. This causes the effect that only the final image can be sent to the
output device and the user gets the impression that the calculation of this image takes more
time than in the previous parallelisation.

To achieve a good load balancing every slave processor is responsible for different parts
of the z-buffer, because it depends on the scene whether or not a processor has to render only
some triangles or many triangles. The probability of a well balanced workload increases if
one processor gets more than one portion of the z-buffer. In Figure 3.3 an example of a
possible assignment of z-buffer pieces to one processor is given. An assignment heuristic
which leads to good results is to choose the processors and their related z-buffers at random.
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Figure 3.3: subpictures for rendering Transputer 2 (marked)



Another problem of this parallelisation is the number of messages which have to be routed
through the network. The parallelisation scheme is shown in Figure 3.4 and it can be seen
that at the beginning all atoms have to be routed downwards to the slaves and at the end of
the algorithm back to the host. It is clear that this bottleneck must drop down the speedup,
especially if those slaves located near the host have to spend more time for routing than for
rendering. But all these problems can be solved by selecting a topology suitable for these
strategy and we achieved good results with this parallelisation idea concerning the rendering
time and the speedup.
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Figure 3.4: the process of rendering (parallel objects)

3.5. De Bruijn networks

De Bruijn networks are related from r-dimensional de Bruijn graphs which consists of 2r

nodes and 2r + 1 directed edges. Each node corresponds to a r-bit string and there exists a
directed edge from each node u 1 u 2 ... u logn to nodes u 2 ... u logn 0 and u 2 ... u logn 1. Every
node has outdegree 2 and indegree 2 and if we take no consideration about the direction of
the edges every node has a degree of 4 like the number of Transputer links. Obviously the
two bit strings 0...0 and 1...1 are connected by themselves and the two bit strings 101...101
and 010...010 in which the bits alternate between 1 and 0 are double connected (see Figure
3.5(a)). But these link ports are very useful for the connection with the Graphical Display
System (GDS) where a Transputer is embedded to display the rendered images. So this
Transputer can be connected with the 0...0, 1...1, 101...101 and 010...010 Transputers and one
additional link of Transputer 0...0 can be connected with the host (see Figure 3.5(b)).
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Figure 3.5: (a) de Bruijn(3) (b) Transputer topology with GDS

For every degree the de Bruijn networks can be used as a complete rendering network in
which the graphical output system is integrated. The de Bruijn networks have some other
likely advantages with which some of the above mentioned routing problems are solved very
easily. In every network a Hamiltonian circuit can be embedded and the diameter of the
network is only logn.

3.6. Ray Tracing

The implementation of the parallel Ray Tracing algorithm was quite easy because we used
the well-known strategy of distributing the rays and the pixels of the view plane respectively.
This can be found in [Gre91]. Every processor of the de Bruijn network is responsible for
one pixel line of the view plane. After calculating the results, this line is sent on the shortest
way to the GDS Transputer. Although this parallel calculation is faster than with
conventional Ray Tracers and very realistic images can be produced with a linear speedup,
the time for generating one picture takes several minutes or hours, especially if many teapots
are within the scene. So this kind of rendering quality should only be used to produce final
images.

3.7. Radiosity

Our parallelisation of the Radiosity method is done by using the progressive refinement
Radiosity approach [Coh88]. As long as no changes in the geometrical layout of the scene
are made, several processors produce the delta form factors whereas the other Transputers are
responsible for the fast image rendering. By parallelising the progressive refinement
approach we achieve the first image after several seconds. The quality of the image increases
according to the numbers of iterations of the delta form factors. But with the speedup of this
parallel version shadows and light distribution can be seen after one minute. We also use the
progressive refinement approach for the animation of the scenes to add a walk through



facility to parimod, but this work is still in hand.

4. Hardware and Examples

After introducing the two main components in this section a complete overview of the
parimod system is given, showing how the components work together.
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Figure 4.1: the parimod system with GDS

As shown in Figure 4.1 parimod combines ism with another X-application, named
graphics and the parallel computer graphics Transputer system and vice versa. The scene
description which is produced with ism is sent via the distributor process and the Transputer
operating system (mtserver) to the rendering network [Par89]. This rendering network is a de
Bruijn network and therefore scalable. The output is generated with the above described
parallel rendering algorithms and can be seen afterwards on the Transputer based Graphical
Display System (GDS) [Par90] in true color, or with the help of the X-application graphics on
a workstation with a 256 color display. Therefore the image has to be routed back through
the mtserver and the distributor to graphics where it is converted from true color to 256
colors, if necessary. With graphics a black/white dithered output of the image on
monochrome screens is also possible (see Screendump 4.1).



Screendump 4.1: black/white dithered output

The configuration and installation of parimod into an existing workstation network (e.g.
Sun4 workstations) can be done only by initializing several UNIX environment variables
which indicate where to map the processes and where the paths of the dates and programs are
found. This guarantees a high degree of portability and flexibility.

Screendump 4.1 shows the living room scene constructed with ism in Screendump 2.1. It
is a black/white dithered image and can therefore only give a poor impression of the quality
of the related true color picture. Over one hundred of such scenes have been produced with
ism and then rendered in parallel to get a feeling of parimod’s power and also to judge the
quality of the different parallelisation techniques. It is clear that for every rendering or
parallelisation technique good or bad scenes can be constructed in the sense that for the same
picture one strategy out-performs the other strategy and vice versa.

We have rendered the main part of the pictures on a 32 processor network and the
calculation time ranges from 1 second (for wireframe images) to 2 minutes (Phong shaded
teapots). The time for Ray Tracing pictures ranges from 5 minutes to several hours
depending on the complexity of the scene. Whereas in the Ray Tracing version we always



achieved a linear speedup, in the Gouraud or Phong shading versions the speedup ranges
from 5 to 25 if 32 processors are used. Not all speedups have satisfied our expectations but
with the above described parallelisation techniques for some pictures large communication
and calculation overhead was detected and an improvement of this overhead should be a
topic for further research.

But more important than the speedups are the short rendering times in general and the
subjective impression of the user to see the image built up piece for piece on the screen which
makes the waiting time as little as possible.

5. Conclusion and further research

With the parimod system we have built a portable and flexible parallel computer graphics
system. It shows that Transputers can be applied into existing workstation networks to
improve the performance of those networks.

Especially in the field of computer graphics where only special hardware solutions
achieve a high performance, we have shown that comparable performance is achievable with
clever combined conventional hardware and well designed parallel software.

As mentioned earlier to integrate the Radiosity walk through animation into parimod is
state of the art research. But additionally there are a lot of aspects to consider in the
improvement of the system, e.g. boolean set operations for constructing objects, texture
mapping and a lot of questions about the parallelisation techniques are open too.

However, parimod is a good example to show just how flexible and powerful Transputers
can be.
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