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Abstract

Artificial neural networks are suitable for the prediction of chaotic time
series. A modified back-propagation algorithm with neuron splitting is used
to train feed-forward multilayer perceptron networks for prediction. There
are two ways of parallelizing: distributing the training set for batch learning
or distribute the vector-matrix-operations for on-line training. Three imple-
mentation are compaired: PVM on a workstation cluster and PARIX and
the new PVM/PARIX on a Transputer system. Results about the quality of
forecasting an examplary time series and speedups of the parallel programs
are presented.

1 Introduction

Artificial neural networks (ANN) are suitable for the prediction of chaotic time
series. They can approximate any function after an amount of training. Especially
for prediction ANNs are an alternative to the classical methods. Today ANNs are
already applied to the calculation of the demand for electrical power and to the
forecasting of economic data [1], [2], [3].

ANNSs learn to approximate a function by presenting discrete values of this
function to the net. For the prediction of time series values of the past — the so
called training set — are given to the net. With n successive values in the input
layer, the net is trained to calculate the (n + 1)th value in the output layer (cf.
Figure 1).

The learning of the entire training set is repeated until the error is less than a
given bound. One path through the training set is called epoch. A trained net can



be used for the prediction of a time series by presenting the last n known values.
Then the net determines the next value for the future.
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Figure 1: Prediction of Time Series

The feed-forward multilayer perceptron (FMP) network is used together with the
back-propagation algorithm [4]. The error minimization by back-propagation takes
an enormous amount of time but the training can be accelerated by efficient par-
allelizations with PVM and PARIX!.

2 Modified Back-Propagation

The optimal configuration of a FMP network with its input, hidden and output
layers is very difficult. The right number of hidden layers and the number of
neurons within each layer is hard to find. Too many hidden neurons lead to a net
that is not able to extract the function rule and takes more time for learning.
With a lack in hidden neurons it is not possible to reach any error bound. Input
and output layers are determined by the problem and the function that is to be
approximated.

The back-propagation algorithm is used to minimize the error of the net by
modifying the activation weights between the neurons. During the forward prop-
agation the error between the nominal and the actual value is calculated. During
the backward propagation the weights are modified in order to minimize this error.
The basis of this method is gradient descent.

Our modified back-propagation algorithm [5] is able to increase the quality of a
net by monotonic net incrementation. The training starts with a net of few hidden
neurons. Badly trained neurons are split periodically while learning the training
set. The old weights are distributed by chance between the two new neurons (cf.
Figure 2). This is done until a maximum number of neurons within a hidden layer
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is reached. By training the net with the modified back-propagation algorithm a
better minimum of the error is reached in shorter time.
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Figure 2: Modified back-propagation with neuron splitting

3 Parallelization

Because it takes very long to train a FMP, a parallelization of the algorithm is
worthwhile. There are two completely different methods for training a MFP with
consequences for the parallelization: on-line training and batch learning.

3.1 On-Line Training

The on-line training changes all the weights within each backward propagation
after every item from the training set. Here the parallelization is very fine-grained.
The vector-matrix-operations have to be calculated in parallel. This needs a lot of
communication.

To reduce communication between the processors we use the idea of [6]. For
each parallel calculated neuron its receptive and projective weights are stored on
the responsible processor. Figure 3 shows the distribution of the neurons and the
weight matrices under three processors.

3.2 Batch Learning

The alternative to on-line training is batch learning. For parallel batch learning
the training set is divided and learned separately with some identical copies of the



net in parallel. The weight corrections are summed up and globally corrected in
all nets after each epoch (cf. Figure 4).
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Figure 3: Parallel on-line backward propagation

Communication is only necessary for the calculation of the global sum of the
weight corrections after each epoch. In addition to this a global broadcast has to
be performed after the master node has calculated the random numbers for the
new weights after splitting, but this happens very rarely.
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Figure 4: Parallel batch learning

The batch learning is different from the on-line training concerning the con-
vergence speed and the quality of approximation.



4 Implementation

We use PVM 3.3.4 and XPVM 1.0.3 on a cluster of Sun Sparc workstations. Re-
cently we run PVM /PARIX 1.0.1 by Parsytec on our system of T800 Transputers.
For batch learning the sequential algorithm runs on every PVM node. Because of
the different power of the computation nodes load balancing must be done. The
part of the training set for a low-performance workstation has to be less than for
a powerful one.

We are implementing the parallelization of the on-line training on our Trans-
puter system with the runtime environment PARIX because of the high communi-
cation demands. The following time measurements show the better communication
performance of PARIX.

5 Results

For testing the algorithms we use the chaotic series generated by the VERHULST
process [7] with r = 2.8:

Tppr = Tp - (L7 (1 —2p)) (VERHULST process)

training results : 10.000 epochs
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Figure 5: Comparison of training results with and without neuron splitting



The configuration of the FMP net is described by a string that contains topol-
ogy information:

<layers>: :<input>:<hidden1>(<max1>) : ... :<output>

<layers> means the number of layers without the input layer. The other values
are the numbers of neurons within the hidden layers at the beginning of the train-
ing and in parentheses the maximum number for this layer reachable by splitting
with the modified back-propagation.

The results in Figure 5 show that the modified back-propagation for the net
2::3:6(24) :11s best in approximating the VERHULST process and predicting its
values. The training set consists of the “original” values left from the vertical line.
On the right the quality of the forecast can be seen for the different nets.

For time measurements we have trained this net by batch learning. The training
times and speedups for different numbers of nodes are presented in the following
tables.

Computing time in sec for

Instance 1 1 Sparc | 2 Sparc | 3 Sparc | 4 Sparc
PVM 62.3 36.4 30.3 26.3
Instance 2 Computing time in sec for
1 T800 | 2 T800 | 4 T80O | 8 T8O | 16 T8O0 | 32 T8O
PARIX 159.0 79.6 40.1 20.7 11.7 8.6
PVM/PaRrIX | 159.0 79.9 47.4 36.6 30.2 44.9
20 o 3
speedup for PARIX_ -~ "~
5 e 7 speedup for PVM
10 7 2
/¥ speedup for PVM /PARIX
5 | s
T | | 1 | | |
124 8 16 32 1 2 3 4
number of processors number of processors

Instance 1 has a training set of 100,000 items and instance 2 of 10,000 items
that are both learned for 100 epochs. The results are very promising, but can
surely be improved in the future.
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Conclusion and Future Work

Our modified back-propagation algorithm for FMP can adapt chaotic time series
very well. Together with the parallelization of batch learning under PVM the

enormous amount of trainig time can be significantly reduced.

For the future we will adapt our implementations to the prediction of time

series for economical consum processes.
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