
First European PVM Users� Group Meeting Rome� Italy� October ���� ����

Performance of PVM

on a Highly Parallel Transputer System

Alexander Reinefeld Volker Schnecke

Center for Parallel Computing FB Mathematik�Informatik
Universit�at Paderborn Universit�at Osnabr�uck

ar�uni�paderborn�de volker�informatik�uni�osnabrueck�de

http���www�uni�paderborn�de�pcpc�pcpc�html http���brahms�informatik�uni�osnabrueck�de

Abstract

Although PVM was developed to use a network of heterogeneous UNIX computers as
a single large parallel computer� it has become an interface for portable programming even
on MPP�s� We present PVM performance results for a massively parallel transputer system
with up to ��	 processors� In comparison to an implementation of the same application in
the native transputer operating system Parix� we realized about 
�� performance loss for
the PVM application� This is mainly caused by restrictions in the process model and the
less e
cient communication of PVM in comparison to Parix�

� Introduction

Analogous to the shift from assembler language programming to the third�generation languages
in the early years of computer science� we are currently witnessing a paradigm change towards
the use of portable programming models in parallel high�performance computing� Like before�
the high�level programming environment is paid for by a lower system performance�

But how much does portability cost in practice� Is it worth paying that price� And what
e�ect has the choice of the programming environment on the algorithm architecture of the
application program�

In this paper� we investigate the performance of an application program running on three dif�
ferent programming interfaces� ��� the native Parix operating system� �	� a homogeneous PVM
environment and �
� a heterogeneous PVM programming environment� For direct comparison�
we used the same underlying hardware system for all three cases�

� The Application

Our application is an algorithm from the domain of Arti�cial Intelligence� the iterative�deep�
ening search algorithm IDA� ��
� This is a heuristic DFS algorithm that simulates a best��rst
search by a series of depth��rst searches with successively increased cost�bounds� Iterative�
deepening search is used in many applications that cannot be solved with direct best��rst
searches �like A�� because of memory restrictions� The search tree is highly irregular� so that
e�cient work�partitioning and dynamic work�load balancing schemes are required in a parallel
implementation to achieve a good overall performance� Our Asynchronous IDA� �AIDA��
algorithm �

 works in two phases�

�



�� In an initial task partitioning phase� the nodes of a search�frontier level in the tree are
generated in parallel and stored on all processors� Each of the nodes is a root of a subtree
and represents an indivisible piece of work for the next phase�

	� In an asynchronous search phase� each processor expands its �own� frontier nodes in depth�
�rst fashion� When a processor becomes idle� it sends a work request to obtain a work
packet �i�e�� an unprocessed frontier node� from another processor� Work requests are
forwarded on a ring topology until one processor has work to share or the request is
returned to the sender� If no work is left for this iteration� the processor proceeds with
the next iteration� that is� it again starts the search on its frontier�nodes� but now with
an increased cost�bound� When a processor �nds a solution� all others are informed by a
broadcast�

To avoid speedup�anomalies� we search for all solutions in our implementation� This ensures
that the node count is always the same for a given problem instance�

� Parix Implementation

Parix is a the native operating system for the Parsytec GC transputer systems� It provides
UNIX functionality at the frontend with library extensions for the needs of the parallel system�
Parix is available for the massively parallel transputer based GCel series� the medium�sized
PowerXplorer �with PowerPC ����� and the new high�performance GC�PowerPlus series with
two PowerPC ��� and four transputers per node�

On the GCel���	�� the processing elements are organized in a 	D�grid� A virtual topologies
library provides a set of commonly used topologies for application programs� that are opti�
mally mapped onto the underlying hardware� We used the ring and torus topologies for our
implementation�

worker

receiver

sender

receiver

sender

work_request

work_packet work_request

work_packet

Figure �� Process model on Parix �ring topology�

Figure � depicts the process model of our AIDA� implementation on Parix� with �ve threads
running on a single node� In Parix� all threads created by a program are executed in the same
context� They share the same global variables de�ned by the program� The worker and receiver
threads in Figure � access the common frontier node array for retrieving new work packets� The
communication threads �sender and receiver� serve incoming messages and send work requests
when asked by the worker� On a torus topology� nine threads are used instead of the shown
�ve�

Performance results �
� �
 obtained on a ��	��node system indicate that our scheme works
well for problems taking more than� say� a minute parallel computing time� Only few commu�



nication is necessary at the end of an iteration when some of the processors get idle� On a

	�
	 � ��	��node torus� we achieved an average e�ciency of �
 � for some random instances
of the � � ��puzzle ��
� For the smaller � � ��puzzle we achieved ��� e�ciency on Korf�s ��

	� largest random problem instances ��
� The detailed analysis �
� �
 exhibits that the Parix
implementation scales well on large MIMD systems and has only low communication overheads�

� PVM Implementation

work / communicate

work_packets

work_requestwork_request

Figure 	� Process model on PVM

For the implementation on PVM� the AIDA� process model had to be changed� Our transputer
executes only one task per processor� so that tree search and load�balancing must be done
in one single task� Following Rao and Kumar �	
� we interrupt the node expansion process at
certain time intervals to allow processing of incoming messages� The frequency of the subroutine
calls for this communication management depends on the system size� Communication service
interrupts occur every ��� to ���� node expansions� With an average working rate of 
����
nodes per second one processor can manage �� to 
�� messages in one second ��� and ��	 tasks
resp��� As shown in Figure 	� the implementation also makes use of a ring topology �like the
Parix version�� but work packets are returned directly to the requester�

� Results

Table � shows the performance results of AIDA� for three instances of the ����Puzzle out
of Korf�s problem set ��
� All e�ciency data is normalized to the performance of an optimal
sequential Parix implementation�

We used two di�erent PVM implementations for our experiments� PVMhomo is an ��release
of a homogeneous PVM version� where all tasks are spawned on the transputer nodes of the
parallel system� The heterogeneous version� PVMhetero� runs on any available hardware� per�
mitting a heterogeneous collection of serial and parallel computers to appear as a single virtual
machine� The task management is done by a PVM daemon running on the front�end machine
of the parallel system� Both PVM environments are based on Parix�

As can be seen from the table� all three versions scale reasonably well for moderate system
sizes� Of course� the implementation on Parix is the fastest� The homogeneous PVM is less

�Thanks to Parsytec� who provided us with an ��release of the homogeneous PVM�



prob t���� e���� t��	�� e��	�� t�	��� e�	��� t���	� e���	�

Parix �	� ��� �� ��� �� ��� 		 ���
�� PVMhomo ��� ��� �	 ��� �� �
� �� 
��

PVMhetero � � �� �
� �� ��� �� 	��

Parix 	�	 ��� �
� ��� �� ��� �� ���
�� PVMhomo 
	� �
� ��� ��� �	 ��� �� ���

PVMhetero � � � � �� ��� �� �
�

Parix ��� ��� 	�� ��� ��	 ��� �� ���
�� PVMhomo ��� ��� 
�� �	� ��� ��� �	� ���

PVMhetero � � � � ��� ��� ��� ���

Table �� The results on the Parsytec GCel

e�cient� but it performs much better than the heterogeneous version� From the very nature of
the heterogeneous PVM� this programming environment cannot be as e�cient as the homoge�
neous implementation� because all messages are checked whether the destination is �within� or
�outside� the MPP system�

� byte �� byte 	�� byte ��	� byte ���� byte

Parix ���s ���s 	�	�s ����s 
����s
PVMhomo ����s �	��s ����s �����s �����s
PVMhetero 
����s 
����s 

���s �	���s �����s

Table 	� Communication time between neighbored processors

In a separate experiment� we benchmarked latency times and communication speed of the
three environments� Table 	 shows the communication time between neighbored processors in
the GCel system� The messages are not encoded to achieve maximal performance� As can be
seen� the setup times of the PVM communication are very high� especially in the heterogeneous
version� In our application� only small messages �� ��� byte� are sent� resulting in higher PVM
communication overheads for the larger system sizes �Table ���

processors �� �	� 	�� ��	

without search �
ms ��ms ���ms 
��ms
with search 
��ms �

ms ���ms �	��ms

Table 
� Times to send a message ��	� bytes� through all processors

In another experiment we tried to determine the performance loss due to the restriction
in the process model� We can�t do concurrent work and loadbalancing� because we only have
one task on each transputer� So� communication can only take place at certain time intervals�
when the search process is interrupted� Table 
 shows the time for sending a message on a ring
through all processors of the system with and without a search routine� The time measured



without the search routine is the time one would expect� if the communication can be done
by a special task concurrent to the node expansion� The delay caused by the search routine
increases the average time for a message between �neighbored�� processors on the ring from
����s to 	��ms on ��	 processors when using the same communication frequency like in the
real application�

� Conclusions

The empirical investigations revealed that our parallel implementation scales su�ciently well
on Parix and PVM for moderate systems sizes ��	�� processors�� This is because few com�
munication occurs in this speci�c application� and many requests are answered in the direct
neighborship of the requester� For the larger system sizes� Parix clearly outperforms PVM� We
expect the gap between Parix and PVM to become more pronounced in applications with a
higher communication demand�

The performance loss for larger systems is mainly caused by the implementation of PVM for
the transputer system� Especially the restriction that only one task on each processor is possible
yields to slower communication because each message could not be processed immediately after
receivement� Further it is not possible to do e�cient work�load balancing if PVM does not
provide any information about the MPP� i� e� the position of a task in the network or information
about the tasks in the direct neighborship�

References

��
 R�E� Korf� Depth��rst iterative�deepening� An optimal admissible tree search� Art� Intell�
	� ������� �������

�	
 V� Kumar and V� N� Rao� Scalable parallel formulations of depth��rst search� In� Kumar�
Gopalakrishnan� Kanal �eds��� Parallel Algorithms for Machine Intelligence and Vision�
Springer�Verlag ������� �����

�

 A� Reinefeld and V� Schnecke� AIDA� � Asynchronous Parallel IDA�� Procs� ��th Canadian
Conf� on Art� Intell� AI���� �May ������ Ban�� Canada� Morgan Kaufman� 	���
�	�

��
 A� Reinefeld and V� Schnecke� Work�load balancing in highly parallel depth��rst search�

Procs� Scalable High Perf� Comp� Conf� SHPCC���� Knoxville� Te� ��
�����

�Because PVM does not provide any information on the position of a task in the MPP� the neighbored

processors on the ring are not always neighbored in the system� so the mapping of the ring onto the �D�grid of

the GCel is randomly�


