First European PVM Users’ Group Meeting Rome, ltaly, October 9-11 1994

Performance of PVM
on a Highly Parallel Transputer System

Alexander Reinefeld Volker Schnecke
Center for Parallel Computing FB Mathematik/Informatik
Universitat Paderborn Universitat Osnabriick
ar@uni-paderborn.de volker@informatik.uni-osnabrueck.de

http://www.uni-paderborn.de/pepe/pepe.html — http://brahms.informatik.uni-osnabrueck.de

Abstract

Although PVM was developed to use a network of heterogeneous UNIX computers as
a single large parallel computer, it has become an interface for portable programming even
on MPP’s. We present PVM performance results for a massively parallel transputer system
with up to 512 processors. In comparison to an implementation of the same application in
the native transputer operating system Parix, we realized about 30% performance loss for
the PVM application. This is mainly caused by restrictions in the process model and the
less efficient communication of PVM in comparison to Parix.

1 Introduction

Analogous to the shift from assembler language programming to the third-generation languages
in the early years of computer science, we are currently witnessing a paradigm change towards
the use of portable programming models in parallel high-performance computing. Like before,
the high-level programming environment is paid for by a lower system performance.

But how much does portability cost in practice? Is it worth paying that price? And what
effect has the choice of the programming environment on the algorithm architecture of the
application program?

In this paper, we investigate the performance of an application program running on three dif-
ferent programming interfaces: (1) the native Parix operating system, (2) a homogeneous PVM
environment and (3) a heterogeneous PVM programming environment. For direct comparison,
we used the same underlying hardware system for all three cases.

2 The Application

Our application is an algorithm from the domain of Artificial Intelligence, the iterative-deep-
ening search algorithm IDA* [1]. This is a heuristic DFS algorithm that simulates a best-first
search by a series of depth-first searches with successively increased cost-bounds. Iterative-
deepening search is used in many applications that cannot be solved with direct best-first
searches (like A*) because of memory restrictions. The search tree is highly irregular, so that
efficient work-partitioning and dynamic work-load balancing schemes are required in a parallel
implementation to achieve a good overall performance. Our Asynchronous IDA* (AIDA*)
algorithm [3] works in two phases:

1. In an initial task partitioning phase, the nodes of a search-frontier level in the tree are
generated in parallel and stored on all processors. Each of the nodes is a root of a subtree
and represents an indivisible piece of work for the next phase.

2. In an asynchronous search phase, each processor expands its ‘own’ frontier nodes in depth-
first fashion. When a processor becomes idle, it sends a work request to obtain a work
packet (i.e., an unprocessed frontier node) from another processor. Work requests are
forwarded on a ring topology until one processor has work to share or the request is
returned to the sender. If no work is left for this iteration, the processor proceeds with
the next iteration, that is, it again starts the search on its frontier-nodes, but now with
an increased cost-bound. When a processor finds a solution, all others are informed by a
broadcast.

To avoid speedup-anomalies, we search for all solutions in our implementation. This ensures
that the node count is always the same for a given problem instance.

3 Parix Implementation

Parix is a the native operating system for the Parsytec GC transputer systems. It provides
UNIX functionality at the frontend with library extensions for the needs of the parallel system.
Parix is available for the massively parallel transputer based GCel series, the medium-sized
PowerXplorer (with PowerPC 601), and the new high-performance GC/PowerPlus series with
two PowerPC 601 and four transputers per node.

On the GCel-1024, the processing elements are organized in a 2D-grid. A virtual topologies
library provides a set of commonly used topologies for application programs, that are opti-
mally mapped onto the underlying hardware. We used the ring and torus topologies for our
implementation.

wor e
work_packet <—

Figure 1: Process model on Parix (ring topology)

Figure 1 depicts the process model of our AIDA* implementation on Parix, with five threads
running on a single node. In Parix, all threads created by a program are executed in the same
context. They share the same global variables defined by the program. The worker and receiver
threads in Figure 1 access the common frontier node array for retrieving new work packets. The
communication threads (sender and receiver) serve incoming messages and send work requests
when asked by the worker. On a torus topology, nine threads are used instead of the shown
five.

Performance results [3, 4] obtained on a 1024-node system indicate that our scheme works
well for problems taking more than, say, a minute parallel computing time. Only few commu-

nication is necessary at the end of an iteration when some of the processors get idle. On a
32 x 32 = 1024-node torus, we achieved an average efficiency of 93 % for some random instances
of the 4 X 5-puzzle [4]. For the smaller 4 X 4-puzzle we achieved 79% efficiency on Korf’s [1]
25 largest random problem instances [4]. The detailed analysis [3, 4] exhibits that the Parix
implementation scales well on large MIMD systems and has only low communication overheads.

4 PVM Implementation

work_packets

A7
<N\

work_request — (T |~ work_request

work / communicate

Figure 2: Process model on PVM

For the implementation on PVM, the AIDA* process model had to be changed. Our transputer
executes only one task per processor, so that tree search and load-balancing must be done
in one single task. Following Rao and Kumar [2], we interrupt the node expansion process at
certain time intervals to allow processing of incoming messages. The frequency of the subroutine
calls for this communication management depends on the system size. Communication service
interrupts occur every 100 to 1000 node expansions. With an average working rate of 35000
nodes per second one processor can manage 40 to 300 messages in one second (64 and 512 tasks
resp.). As shown in Figure 2, the implementation also makes use of a ring topology (like the
Parix version), but work packets are returned directly to the requester.

5 Results

Table 1 shows the performance results of AIDA* for three instances of the 4x4-Puzzle out
of Korf’s problem set [1]. All efficiency data is normalized to the performance of an optimal
sequential Parix implementation.

We used two different PVM implementations for our experiments: PVMj,.,, is an a-release
of a homogeneous PVM version! where all tasks are spawned on the transputer nodes of the
parallel system. The heterogeneous version, PVMjy ter0, Tuns on any available hardware, per-
mitting a heterogeneous collection of serial and parallel computers to appear as a single virtual
machine. The task management is done by a PVM daemon running on the front-end machine
of the parallel system. Both PVM environments are based on Parix.

As can be seen from the table, all three versions scale reasonably well for moderate system
sizes. Of course, the implementation on Parix is the fastest. The homogeneous PVM is less

'Thanks to Parsytec, who provided us with an a-release of the homogeneous PVM.

| prob | | 1(64) | e(64) | t(128) | e(128) | £(256) | e(256) | ¢(512) | e(512) |

Parix 129 | 97% 66 95% 45 70% 22 1%
64 | PVMpuomo 156 | 80% 82 76% 50 63% 41 38%
PVMpetero - - 86 73% 57 55% 54 29%
Parix 282 | 96% 139 98% 71 96% 40 85%
75 | PVMpomo 327 | 83% 169 81% 92 4% 67 51%
PVMpetero - - - - 99 69% 80 43%
Parix 588 | 98% 294 98% 152 96% 90 81%
84 | PVMpomo 686 | 85% 355 82% 186 8% 128 57%
PVMpetero - - - - 196 4% 149 49%

Table 1: The results on the Parsytec GCel

efficient, but it performs much better than the heterogeneous version. From the very nature of
the heterogeneous PVM, this programming environment cannot be as efficient as the homoge-
neous implementation, because all messages are checked whether the destination is ‘within’ or
‘outside’ the MPP system.

\ | 1 byte | 64 byte [256 byte | 1024 byte | 4096 byte

Parix 45 s 90 us 272 s 951 ps 3716 ps
PVMyomo 468 us 527 s 769 s 1681 ps 4794 ps
PVMpciero | 3069 us | 3109 us | 3346 us 4269 s 7986 ps

Table 2: Communication time between neighbored processors

In a separate experiment, we benchmarked latency times and communication speed of the
three environments. Table 2 shows the communication time between neighbored processors in
the GCel system. The messages are not encoded to achieve maximal performance. As can be
seen, the setup times of the PVM communication are very high, especially in the heterogeneous
version. In our application, only small messages (= 110 byte) are sent, resulting in higher PVM
communication overheads for the larger system sizes (Table 1).

‘ processors ‘ 64 ‘ 128 ‘ 256 ‘ 512 ‘
without search 43 ms 87T ms | 174ms 349 ms
with search 348 ms | b33 ms | 648 ms | 1209 ms

Table 3: Times to send a message (128 bytes) through all processors

In another experiment we tried to determine the performance loss due to the restriction
in the process model. We can’t do concurrent work and loadbalancing, because we only have
one task on each transputer. So, communication can only take place at certain time intervals,
when the search process is interrupted. Table 3 shows the time for sending a message on a ring
through all processors of the system with and without a search routine. The time measured

without the search routine is the time one would expect, if the communication can be done
by a special task concurrent to the node expansion. The delay caused by the search routine
increases the average time for a message between ‘neighbored’ processors on the ring from
681 s to 2.4 ms on 512 processors when using the same communication frequency like in the
real application.

6 Conclusions

The empirical investigations revealed that our parallel implementation scales sufficiently well
on Parix and PVM for moderate systems sizes (<256 processors). This is because few com-
munication occurs in this specific application, and many requests are answered in the direct
neighborship of the requester. For the larger system sizes, Parix clearly outperforms PVM. We
expect the gap between Parix and PVM to become more pronounced in applications with a
higher communication demand.

The performance loss for larger systems is mainly caused by the implementation of PVM for
the transputer system. Especially the restriction that only one task on each processor is possible
yields to slower communication because each message could not be processed immediately after
receivement. Further it is not possible to do efficient work-load balancing if PVM does not
provide any information about the MPP, i. e. the position of a task in the network or information
about the tasks in the direct neighborship.

References

[1] R.E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Art. Intell.
27 (1985), 97-109.

[2] V. Kumar and V. N. Rao. Scalable parallel formulations of depth-first search. In: Kumar,
Gopalakrishnan, Kanal (eds.), Parallel Algorithms for Machine Intelligence and Vision,
Springer-Verlag (1990), 1-41.

[3] A. Reinefeld and V. Schnecke. AIDA* — Asynchronous Parallel IDA*. Procs. 10" Canadian
Conf. on Art. Intell. AI'94, (May 1994), Banff, Canada, Morgan Kaufman, 295-302.

[4] A. Reinefeld and V. Schnecke. Work-load balancing in highly parallel depth-first search.
Procs. Scalable High Perf. Comp. Conf. SHPCC’94, Knoxville, Te, 773-780.

?Because PVM does not provide any information on the position of a task in the MPP, the neighbored
processors on the ring are not always neighbored in the system, so the mapping of the ring onto the 2D-grid of
the GCel is randomly.

