Proc. Scalable High Performance Computing Conf. SHPCC'94, IEEE Comp. Sc. Press (1994), 773-780

Work-Load Balancing in Highly Parallel Depth-First Search

A. Reinefeld and V. Schnecke
PC? - Paderborn Center for Parallel Computing
D-33095 Paderborn, Germany

Abstract

Among the various approaches for parallel depth-
first search (DFS), the stack-splitting schemes are
most popular. However, as shown in this paper, dy-
namical stack-splitting is not suitable for massively
parallel systems with several hundred processors. Ini-
tial work-load imbalances and work packets of dissim-
tlar sizes cause a high communication overhead.

We compare work-load balancing strategies of two
depth-first searches and propose a scheme that uses
fine-grained fired-sized work packets. In its iterative-
deepening variant (named AIDA*) the global workload
distribution tmproves from one iteration to the next.
As a consequence, the communication overhead de-
creases with increasing search time!

1 Introduction

Depth-first search (DFS) is an important technique
for finding a solution in a state space tree (or graph)
containing one or more solutions. Many applica-
tions of Operations Research, Artificial Intelligence
and other areas in Computing Science use DFS as a
basic solution method. Because these problems are
computationally intensive, the design of efficient par-
allel algorithms is of great importance.

In this paper, we compare two work-load balancing
methods for massively parallel DFS: a stack-splitting
scheme [1, 7, 13] and a fizred-packet DFS [16]. Both
employ a simple task attraction mechanism. They
mainly differ by the work distribution: While the first
one splits its stack on demand, the second uses fixed
size work packets.

We briefly discuss basic sequential search tech-
niques, introduce the two parallel DFS variants, and
present empirical performance results obtained on a
large scale 1024-node MIMD system. Our theoreti-
cal analysis gives evidence that the fixed-packet DFS
scales better on large systems than the commonly used

stack-splitting, thereby confirming our empirical re-
sults.

2 Basic Search Schemes

Depth-First Search (DFS) first expands the initial
state by generating all successors to the root node.
At each subsequent step, one of the most recently
generated nodes 1s taken and its successors are gen-
erated. (The successors may be sorted according to
some heuristic prior to expansion.) If at any instance,
there are no successors to a node, or if it can be de-
termined that this node does not lead to a solution,
the search backtracks, that is, the expansion proceeds
with one other of the most recently generated nodes.
DFS is usually implemented with a stack holding
all nodes (and immediate successors) on the path to
the currently explored node. The resulting space com-
plexity of O(d) is linear to the search depth d.

Backtracking is the simplest form of DFS. It termi-
nates as soon as a solution is found. Therefore, opti-
mality cannot be guaranteed. Moreover, backtracking
might not terminate in graphs containing cycles or in
trees with unbounded depth.

Depth-First Branch-and-Bound (DFBB) uses a
heuristic function to eliminate parts of the search
space that cannot contain an optimal solution. It con-
tinues after finding a first solution until the search
space is exhausted. Whenever a better solution is
found, the current solution path and value are up-
dated. Subtrees that are known to be inferior to the
current solution are cut off.

Best-First Search sorts the sequence of node expan-
sions according to a heuristic function. The popular
A* algorithm [9, 11] uses a heuristic evaluation func-
tion f(n) = g(n) + h(n) to decide which successor
node n to expand next. Here, g(n) is the measured
cost of the path from the initial state to the current



node n and h(n) is the estimated completion cost to
a nearest goal state. If h does not overestimate the
remaining cost, A* is said to be admissible, that is, it
finds an optimal (least cost) solution path. Moreover,
it does so with minimal node expansions [11]; no other
search algorithm (with the same heuristic 2) can do
better. This is possible, because A* keeps the search
graph in memory and performs a best-first search on
the gathered node information.

One disadvantage of A* is its exponential space
complexity of O(w?) in trees of width w and depth
d. The high demands on storage space makes it infea-
sible for many applications.

Iterative-Deepening A* (IDA¥*) [6] simulates A*’s
best-first node expansion by a series of depth-first
searches, each with the cost-bound f(n) increased by
the minimal amount. The cost-bound 1is initially set
to the heuristic estimate of the root node. Then, for
each iteration, the bound is increased to the minimum
value that exceeded the previous bound until a solu-
tion is found. Like A* TDA* is admissible (finds an
optimal solution) when h does not overestimate the
solution cost [6]. But it does so with a much lower
space complexity of O(d).

At first sight, it might seem that TDA* wastes
computing time by repeatedly re-examining the same
nodes of the shallower tree levels. But theoretical
analyses [6, 8] give evidence that IDA* has the same
asymptotic branching factor as A* when the search
space grows exponential with the search depth.

3 Two Approaches to Parallel DFS

DFS can be implemented on a MIMD system by
partitioning the search space into subtrees that are
searched in parallel. Each processor searches a disjoint
subtree in a depth-first fashion, which can be done
asynchronously without any communication'. When
a processor has finished its work, it tries to get an
unsearched subtree from another processor. When a
goal node is found, all of them quit.

Effective work-load balancing is important to keep
all processors busy. In the following, we describe two
variants that are based on simple task attraction: a
dynamical stack-splitting method and a scheme using
fine-grained fixed work packets.

I This is true for IDA* and backtracking. Branch-and-bound
needs some communication for broadcasting the bound values.

3.1 Stack-Splitting DFS

In the parallel stack-splitting DFS described by Ku-
mar and Rao [7, 12] each processor works on its own
local stack that keeps track of the untried alternatives.
When the local stack is empty, a processor issues a
work-request to another processor for an unsearched
subtree. The donor then splits its stack and sends a
part of its own work to the requester.

Initially, all work is given to one processor, Py,
which performs DFS on the root node. The other pro-
cessors start with an empty stack, immediately ask-
ing for work. When Py has generated enough nodes,
it splits its stack, donating subtrees to the request-
ing processors, which likewise split their stacks on de-
mand.

This scheme works for simple DFS as well as for it-
erative DFS. In the latter case, the algorithm is named
PIDA¥ for Parallel IDA* [12]. PIDA* starts a new
iteration with the an increased cost-bound when all
processors have finished their current iteration with-
out finding a goal node. The end of an iteration is de-
termined by a barrier synchronization algorithm, e.g.,
Dijkstra’s termination detection algorithm [3].

The performance results in the literature [7, 13, 15]
and our own experiments indicate that stack-splitting
works only on moderately parallel systems with < 256
processors and a small communication diameter. It
does not seem to scale up for larger system sizes be-
cause of high communication overheads and inherent
work load imbalances. Two major bottlenecks make
stack-splitting impractical for massively parallel sys-
tems:

e on networks with a large communication diameter
it takes a long time to equally distribute the initial
work-load among the processors

e recursive stack-splitting generates work packets of
dissimilar sizes, resulting in vastly different (and
unpredictable) processing times per packet.

Moreover, the stack-splitting method requires im-
plementation of explicit stack handling routines,
which 1s more error-prone and less efficient than the
compiler-generated recursive program code [15].

3.2 Fixed-Packet DFS

Our second scheme, named fized-packet DFS, has
the two working phases shown in Figure 1:

1. In an initial data partitioning phase, the root
node is broadcasted to all processors, which re-
dundantly expand the first few tree levels in a



- root

breadth-first
node erpansion
rontier node
()

array

ng Nitp Tit2p

asynchronous parallel DFS

Figure 1: Fixed-Packet DFS Program Architecture

breadth-first fashion. Each processor stores the
same frontier nodes in its local node array. Nei-
ther communication nor synchronization is re-
quired in this phase.

2. In the main asynchronous search phase, each
processor F; starts expanding its subtrees
Nj, Npti; Nopis - - - in DFBB fashion? When a pro-
cessor gets idle, it sends a work request to obtain
a new work packet (i.e., one or more unprocessed
frontier nodes) from another processor. If a pro-
cessor finds a new solution, all others are informed
by a global broadcast.

In practice, little work-load balancing is required,
because the initial distribution phase (taking only a
few seconds) keeps the processors busy for more than
90% of the time without any loadbalancing.

Our fixed-packet DFS scheme ships fine-grained
work packets that are not further splitted. Hence,
existing sequential DFS applications can be linked to
our communication code to build a highly parallel DFS
program without modifying the code.

Fixed-packet DFS is especially effective in combina-
tion with iterative-deepening search [16]. We named
it AIDA* for asynchronous parallel IDA*. AIDA*
expands the frontier node subtrees in an iterative-
deepening manner until a solution is found.

Unlike PIDA*, AIDA* does not perform a hard bar-
rier synchronization between the iterations. When a
processor could not get further work, it is allowed to
proceed asynchronously with the next iteration, first
expanding its own local frontier nodes to the next
larger cost-bound. On one hand, this reduces pro-
cessor idle times, but on the other hand, the search
cannot be stopped right after a first solution has been
found. Instead, the processors working on earlier iter-
ations must continue their search to check for better
solutions.

?Note that the nodes assigned to a processor cover all parts
of the tree, so this leads to a wide spreaded distribution of the
search-frontier over the whole system.

Note, that in AIDA* the work packets change own-
ership when being sent to another processor. This
has the effect of a self-improving global work-load bal-
ancing because subtrees tend to grow at the same
rate when being expanded to the next larger search
bound. Lightly loaded processors that asked for work
in the last iteration will be better utilized in the
next. More important, the communication overhead
decreases with increasing search time [16].

4 Applications

The 15-puzzle [6, 9, 11], a typical application from
single-agent search, consists of fifteen squared tiles lo-
cated in a squared tray of size 4 x 4. One square,
the blank square, is kept empty so that an orthogo-
nally adjacent tile can slide into its position — thus
leaving a blank square at its origin. The problem
is to re-arrange some given initial configuration with
the fewest number of moves into a goal configuration
without lifting one tile over another. While it would
seem easy to obtain any solution, finding an optimal
(=shortest) solution path is NP-complete [14]. The
15-puzzle spawns a search space of 16!/2 a2 1013 states.
Using IDA*, it takes some hundred million node ex-
pansions to solve a random problem instance with the
popular Manhattan distance (the sum of the minimum
displacement of each tile from its goal position) as a
heuristic estimate function.

Floorplan area optimization [17, 18] is a stage in
VLSI design. Here the relative placements and ar-
eas of the building blocks of a chip are known, but
their exact dimensions can still be varied over a wide
range. A floorplan is represented by two dual polar
graphs G = (V,&) and H = (W, F), and a list of po-
tential implementations for each block. As shown in
Figure 2, the vertices in V and W represent the vertical
and horizontal line segments of the floorplan. There
exists an edge e = (v1,vs) in the graph G, if there is
a block in the floorplan, whose left and right edges
lie on the corresponding vertical line segments. For a
specific configuration (i.e. a floorplan with exact block
sizes), the edges are weighted with the dimensions of
the blocks in this configuration. The solution of the
floorplan optimization is a configuration with mini-
mum layout area, given by the product of the longest
paths in the graphs G and H.

In our parallel DFBB implementation, the leaves of
the search tree describe complete configurations, while
the inner nodes at depth d represent partial floorplans
consisting of blocks By ...By. The algorithm back-



v2

i aq (P
Bl wl
W2 B2
B3 | g4 "o lwe
w4 J
vl v2 v3 wa

Figure 2: A floorplan and the graphs G and H

tracks when the area of a new partial floorplan exceeds
the area of the currently best solution.

5 Empirical Results

5.1 Speedups

256
ATDA* ¢4
ATDA* ¢5
S
p
€ .
(&} L - PIDA* Cq
d 128 e
B ' - . PIDA* ¢3
S . - // - -
64 S
S
S 2
&
’d
I I 1
64 128 256

processors p

Figure 3: Speedup on a ring (15-puzzle)

Figure 3 shows speedup graphs of the 15-puzzle run
on a unidirectional ring with up to 256 processors.
We selected the ring topology for our experiments,
because due to the large communication diameter, it
1s difficult to achieve good speedups. Algorithms ex-
hibiting good performance on a relatively small ring
are likely to run efficiently on much larger networks
with a small diameter (torus, hypercube, etc.). As
can be seen, this is true for AIDA*  which outper-
forms PIDA* | especially on the larger networks.

Taking Korf’s [6] 100 random 15-puzzle problem
instances and dividing them into four classes ¢ .. .cq,

we run the 50 hardest problems of the classes ¢z and
ca on our transputer system. Speedup anomalies are
eliminated by normalizing the CPU time results to
the number of node expansions. The data given is
the average of the 25 single speedups achieved in the
corresponding problem class.

In both algorithms, PIDA* and AIDA*  work re-
quests are forwarded along the ring until a processor
has work to share. The donor then selects an un-
searched node, deletes it from the stack (for PIDA*)
or frontier node array (for ATDA*) and sends it in the
opposite direction to the requester®. When no proces-
sor has work to share, the original work-request makes
a full round through the ring, indicating that no work
is available.

Figure 4: Work-load balancing in fixed-packet DFS

On a torus network, the work-packets are sent first
along the horizontal and then along the vertical rings,
see Fig. 4. This results in a widespreaded distribution
of the local work-load among the whole system. Each
processor consideres a different subset of 2,/p —1 pro-
cessors. So the maximum travel-length of the work-
packets doesn’t increase lineary with system-size.

Figure 5 shows the AIDA* performance on torus
topologies of up to 32 x 32 = 1024 processors. On
this system, a class ¢s problem takes only 7 seconds
to solve, while the larger ¢4 problem instances take 43
seconds on the average.

The topmost graph in Figure 5 illustrates ATDA*’s
performance on the larger (5 x 4) — 1 = 19-puzzle.
Thirteen problem instances have been generated and
run on tori with an average CPU-time of 30 minutes
on the 1024-node system.

3More precisely, AIDA* bundles up to five nodes in a work
packet. PIDA* transfers the highest unsearched subtree; alter-
native stack-splitting strategies are discussed in [4, 7].



1024

» 19-puz.

768
S 15-puz., c4
e
(S
g 512 15-puz., c3
P
S

256

128

| | |
128 256 512 768 1024

processors p

Figure 5: AIDA* speedup on torus topologies

5.2 Initial Work Distribution in Fixed-
Packet DFS

In the first phase, AIDA* performs a breadth-first
search to expand the same search node frontier on ev-
ery processor. The breadth-first search? is stopped
when a sufficient number of nodes is generated to
give every processor its own fine-grained work pack-
ets for further asynchronous exploration. In practice,
this is not done in a single step, but an intermediate
search frontier is stored on every processor, so that
the more fine-grained work packets can be generated
asynchronously on all processors (for details see [16]).

At the end of the initial work distribution phase,
each processor ‘owns’ & 3000 work packets for the 15-
puzzle, when being run on 1024 processors.

40 c3
30
time - i
(%]
10
| c4
0 =

T | | | |
128 256 512 768 1024

processors p

Figure 6: Time of first phase (15-puzzle)

4In practice, we simulate breadth-first search by iterative-
deepening.

The time spent in the first phase depends on the
node expansion time and the system size, because
enough nodes must be generated to keep every pro-
cessor busy thereafter. In the 15-puzzle, three seconds
are spent in the first phase on a 1024-node system [16],
resulting in a 40% overhead of the total elapsed time
for the small class ¢3 problems (Fig. 6) on the 1024-
node system. Clearly, AIDA* — and more generally —
our fixed-packet DFS, is ill suited for running small
problem instances. But many other methods would
not work either because they suffer the same initial
work distribution problem.

5.3 Communication Overhead

bOUIld nodes messages VVOI'k mess.

PIDA* AIDA* PIDA* AIDA*
35 24 1 - 0 -
37 172 4 - 0 -
39 1,060 26 - 0 -
41 6,259 51 - 0 -
43 71,906 | 276 - 4 -
45 199,538 | 483 163 7 3
47 1,097,015 | 691 266 | 20 13
49 5,967,654 | 1639 329 | 72 15
51 32,036,451 | 3231 585 | 253 12
53 | 169,630,586 | 11287 562 | 1037 8
55 | 886,017,863 | 26050 285 | 3066 4

Table 1: Messages per processor (15-puzzle, p = 128)

Table 1 shows the total messages and work mes-
sages received by a single node while computing a hard
15-puzzle problem® on a 128-processor ring. The total
message count includes all message transfers through
that specific node, while the work message count rep-
resents only work packets received by the node.

As can be seen, PIDA*’s total message flow in-
creases from one iteration to the next. AIDA*’s com-
munication overhead, on the other hand, decreases af-
ter a couple of iterations. This is caused by our adap-
tive load balancing method that constantly improves
the global work-load by keeping the transferred nodes
at the new processor for the next iteration.

Moreover, the absolute number of messages is by
an order of magnitude lower for AIDA*. Similar re-
sults have been obtained for the larger 1024-node sys-
tem and also for the more time-consuming 19-puzzle.
The communication overhead does not significantly in-

5Problem #95, h=35, g=57. AIDA* solution time: 243 secs.



crease with growing system size because most work
requests are satisfied in the nearest neighborship.

5.4 Effect of Different Work Packet Sizes

Work packets of dissimilar sizes make it harder to
balance the global work-load, because the amount of
work a processor receives with a packet is not known
a priori. This is a serious problem in the 15-puzzle,
where the work packet sizes vary by several orders of
magnitude.

Figure 7 illustrates for various work packet sizes
(measured in nodes per subtree) how many of these
packets exist in the system. Note that both axes are
plotted logarithmical, showing packets ranging from
only a handful of nodes up to 300,000 nodes for the
largest subtree.

30000
10000
g 1000
;-
]to 100
' -
e
T
g ‘ \|||
[ |

T T T
102 103 10%

nodes per subtree

10° 3-10°

Figure 7: Size of work packets, 15-puzzle, p = 64

We therefore modified AIDA* to transfer only
medium sized subtrees. In our implementation [16],
this is done with a partial sort on the frontier nodes
array. After each iteration, work packets of average
size are moved to the end of the array, to be shipped
to other processors during the next iteration. Further
research 1s under way to adjust all work packets to an
average size with node splitting and node contraction
strategies [2].

5.5 Results on Floorplan Optimization

We implemented a DFS-Branch-and-Bound algo-
rithm with our fixed-packet work-load distribution
scheme for the floorplan optimization problem. We
tested our algorithm with an instance consisting of 25
blocks and five different implementations per block,
which spawns a search tree with 5%° ~ 3.0-10'7 nodes.

In the initial distribution phase, the first levels of the
tree are expanded to get &~ 80 frontier nodes for each
processor. The proportion of the first phase to the par-
allel execution time ranges from 0.2% (p = 64) to 4.6%
(p = 768). Asin the 15- and 19-puzzle, the first phase
gives a good initial work distribution, which keeps the
processors working on their local nodes for more than
90% of the total execution time. Note, that in this
time there is no communication for load balancing re-
quired, only newly computed bound values have to be
broadcasted. Parallelism is fully exploited since all
processors execute the sequential search algorithm on
their local nodes. This results in a high work-rate even
for larger systems as shown in Table 2.

p 15-puzzle | 19-puzzle | floor

1 35000 — 772

64 29586 — 726
128 29203 — 719
256 28218 — 719
512 26817 33905 709
768 25020 33817 701
1024 24165 33707 685

Table 2: Average work-rate (nodes per sec.)

At first sight, the exhaustive search of our fixed-
packet DFBB might seem less efficient, because the
single processors would terminate at different times
due to the fixed work-packet sizes. But in practice,
we found that due to the better bounds the subtrees
are getting smaller to the end of the search, so that
the termination times are very close to each other.

6 Scalability Analysis

As seen in our empirical results, the stack-splitting
scheme does not work on the larger systems because of
its large communication-overhead. The total overhead
of a parallel system is given by

tover (P) =p- tpar (P) - tseq~

It describes the amount of time the processors spend in
addition to the execution time of the sequential algo-
rithm ¢;.4. This overhead can be used in the speedup
equation

S(p) — tseq _ tseq - p p

T lover(P) Flseg 14 Faerl?)



and the efficiency equation

1
Elp)= —.
(p) 1_|_ tover(p)

lseq

Kumar and Rao [7] define a measure for the scala-
bility of parallel systems. The soeffictency-function
describes the required increase of the work w to
achieve a constant efficiency E with increasing sys-
tem size p. Because t;oq = O(w), we can derive the
following general equation for the growth rate of w:

FE
W= ———"- tover(p)

1—F

To compare the scalability of the two work-
distribution schemes, we must determine the over-
heads of both schemes. In the stack-splitting scheme,
the work w must be splitted into w/p sized work-
packets to get an optimal distribution among the pro-
cessors. When the stack is splitted, the work w is di-
vided into two parts, the smallest of which is at least
a-w. For a processor P; with distance d from processor
Py, which initially holds all the work, the maximum
work 1t can get — due to the recursive splitting on
the way from Py to Py — is (1 — a)? - w. So P; must

/p

receive at least (I_U;W work packets. This results

. (p) .
in a total work transfer count greater than B2 with

d(p)
B := (1—a)~! and d(p) as the diameter of the network.

With this, we get a lower bound for the overhead of
the stack-splitting scheme in our implementation on

the ring:
tstack—split(p) -0 (ﬁ_p)
over p

Kumar and Rao [7] also describe another work-
distribution method for their stack-splitting scheme
where the work can be received from any processor
throughout the system (not only neighboring proces-
sors). They derive an upper bound for the isoefficiency
function of O(d(p) - logp - p).

In our fixed-packet DFS, the communication over-
head and the runtime spent in the initial work dis-
tribution phase grow only linear with the system size.
This results in the following upper bound for the over-
head of our fixed-packet DFS:

then P (p) = O(p) + P - tistphase(p) = O(p°)
Figure 8 shows isoefficiency functions for the stack-

splitting scheme (with both work distribution meth-
ods) and our fixed-packet scheme on the ring topology.

stack-splitting fixed-packet

problem-
size /

| | | |
512 1024 1536 2048

processors p

Figure 8: Isoefficiency functions for the ring

7 Conclusion

We compared the performance of two parallel DFS
schemes. The stack-splitting scheme employs dynam-
ical work-load balancing right from the beginning of
the search, which results in high communication over-
heads and initial processor idle times. Recursive split-
ting of the work packets generates successively smaller
packets that might be too small to justify shipment to
another processor. In its iterative-deepening version
(PIDA*) the communication overhead increases with
increasing search time.

In our parallel fized-packet DFS the processors start
with an equal work distribution that has been gener-
ated by a redundant breadth-first search of the first
few tree levels on all processors. Later on, work pack-
ets of fixed sizes are shipped to idle processors on de-
mand.

In its iterative-deepening variant the fixed-packet
DFS, named AIDA* automatically improves the
global load balance by changing ownership of the
transferred work packets. As a result, the communi-
cation overhead decreases from iteration to iteration.

Unlike PIDA*, ATDA* is portable in the sense that
existing sequential search routines can be linked to
AIDA*’s communication routines for implementation
on a large scale MIMD system.

References

[1] S. Arvindam, V. Kumar, V. Rao. Efficient parallel
algorithms for searching problems: Applications in
VLSI CAD. 3rd Symp. Frontiers Mass. Par. Comp.
1990, 166-169.



[2] P.P. Chakrabarti, S. Ghose, A. Acharya, S.C. de
Sarkar. Heuristic search in restricted memory. Art.

Intell. 41,2(1989/90), 197 — 221.

[3] E. Dijkstra, W.H.J. Feijen and A.JM. van
Gasteren. Derwation of a termination detection
algorithm for distributed computation. Inf. Proc.

Lett. 16 (1983), 217-219.

[4] S. Farrange, T. A. Marsland. Dynamic splitting of
decision trees. Tech. Rep. TR93.03, University of
Alberta, Edmonton (March 93).

[6] AY. Grama, A. Gupta and V. Kumar. Isoeffi-
ciency: Measuring the scalability of parallel al-
gorithms and architectures. IEEE Par. & Distr.
Techn. 1,3 (1993), 12-21.

[6] R.E. Korf. Depth-first iterative-deepening: An op-
timal admissible tree search. Art. Intell. 27 (1985),
97-109.

[7] V. Kumar, V. Rao. Scalable parallel formula-
tions of depth-first search. Kumar, Gopalakrish-
nan, Kanal, eds., Par. Alg. for Mach. Intell. and
Vision, Springer 1990, 1-41.

[8] A. Mahanti, S. Ghosh, D.S. Nau, A K. Pal and L.
Kanal. Performance of IDA* on trees and graphs.
10th Nat. Conf. on Art. Int., AAAI-92, San Jose,
(1992), 539-544.

[9] N.J. Nilsson. Principles of Artificial Intelligence.
Tioga Publ., Palo Alto, CA, 1980.

[10] C.H. Papadimitriou and K. Steiglitz. Combina-
torial Optimization: Algorithms and Complexity.
Prentice-Hall, 1982.

[11] J. Pearl. Heuristics. Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley,
Reading, MA, (1984).

[12] V.N. Rao, V. Kumar and K. Ramesh. A parallel
implementation of iterative-deepening A*. AAAI-
87, 878-882.

[13] V.N. Rao and V. Kumar. Parallel depth first
search. Part I. Implementation. Intl. J. Parallel
Programming 12, 6 (1987), 479-499.

[14] D. Ratner and M. Warmuth. Finding a shortest
solution for the N x N extension of the 15-puzzle
15 intractable. AAAT-86, 168-172.

[15] A. Reinefeld. Effective parallel backtracking meth-
ods for Operations Research applications. EU-
ROSIM Intl. Conf. Massively Par. Proc., Delft
(June 1994).

[16] A. Reinefeld and V. Schnecke. AIDA* — Asyn-
chronous Parallel IDA*. 10" Canadian Conf. on
Art. Intell. AT'94, (May 1994), Banff, Canada.

[17] L. Stockmeyer. Optimal orientations of cells in
silicon floorplan designs. Inform. and Control 57

(1983), 97-101.

[18] S. Wimer, I. Koren and I. Cederbaum. Op-
timal aspect ratios of building blocks wn VLSI
25th ACM/IEEE Design Automation Conference,
(1988), 66-72.



