
Flow simulation with an adaptive �nite element

method on massively parallel systems

Frank Lohmeyer� Oliver Vornberger

University of Osnabr�uck� D������ Osnabr�uck� Germany

lohmey�informatik�uni�osnabrueck�de

Abstract� An explicit �nite element scheme based on a two step Taylor�Galerkin
algorithm allows the solution of the Euler and Navier�Stokes Equations for a wide
variety of �ow problems� To obtain useful results for realistic problems one has to
use grids with an extremely high density to get a good resolution of the interesting
parts of a given �ow� Since these details are often limited to small regions of the
calculation domain� it is e�cient to use unstructured grids to reduce the number of
elements and grid points� As such calculations are very time consuming and inherently
parallel the use of multiprocessor systems for this task seems to be a very natural
idea� A common approach for parallelization is the division of a given grid� where the
problem is the increasing complexity of this task for growing processor numbers� Here
we present some general ideas for this kind of parallelization and details of a Parix
implementation for Transputer networks� To improve the quality of the calculated
solutions an adaptive grid re�nement procedure was included� This extension leads
to the necessity of a dynamic load balancing for the parallel version� An e�ective
strategy for this task is presented and results for up to ��	
 processors show the
general suitability of our approach for massively parallel systems�

� Introduction

The introduction of the computer into engineering techniques has resulted in the growth
of a completely new �eld termed computational �uid dynamics �cfd�� This �eld has
led to the development of new mathematical methods for solving the equations of �uid
mechanics� These improved methods have permitted advanced simulations of �ow phe�
nomena on the computer for a wide variety of applications� This leads to a demand
for computers which can manage these extremely time consuming calculations within
acceptable runtimes� Many of the numerical methods used in computational �uid dy�
namics are inherently parallel� so that the appearance of parallel computers makes them
a promising candidate for this task�
One problem arising when implementing parallel algorithms is the lack of standards

both on the hardware and software side� As things like processor topology� parallel
operating system� programming languages� etc� have a much greater in�uence on parallel
than on sequential algorithms� one has to choose an environment where it is possible
to get results which can be generalized to a larger set of other environments� We think
that future supercomputers will be massively parallel systems of the mimd class with
distributed memory and strong communication capabilities� On the software side it
seems that some standards could be established in the near future� As our algorithm



is designed for message passing environments� this standard might be mpi �Message
Passing Interface� ��	�
In the cfd �eld there is another important point
 the numerical methods for the

solution of the given equations� As we are mainly computer scientists� we decided not
to invent new mathematical concepts but to develop an e�cient parallel version of an
algorithm which was developed by experienced engineers for sequential computers and
which is suitable for the solution of problems in the �eld of turbomachinery ��	� The
hardware platforms which are availiable for us� are Transputer systems of di
erent sizes�
which ful�ll the demands mentioned above� At the time the algorithm was developed�
there was no mpi�environment availiable for our transputer systems� so here we will
present a version using Parix �Parallel extensions to Unix� a parallel runtime system
for Parsytec machines� that needs only a small number of parallel routines� which are
common in most message passing environments� Most of these routines are hidden inside
a few communication procedures� so that they can be replaced easily� when changing
the parallel environment�
The following two sections give a brief overview about the physical and mathematical

foundations of the used numerical methods �for a detailed description see ��� �	� and
an outline of the general parallelization strategy� including a comparison with other
approaches �see also ��� �	�� The next section describes in detail some grid division
algorithms which are a very important part for this kind of parallel algorithms� because
they determine the load balancing between processors� The special subjects of adaptive
re�nements and dynamic load balancing are discussed in a separate section� Then some
results will be presented� while the last section closes with a conclusion and suggestions
for further research�

� Foundations

This section gives a brief description of the equations which are necessary for the parallel
�ow calculations�
For our �ow calculations on unstructured grids with the �nite element method we

use Navier�Stokes Equations for viscous �ow and Euler Equations for inviscid �ow� The
Navier�Stokes �Euler� Equations can be written in the following form�

�U

�t
�
�F

�x
�
�G

�y
� �� ���

where U � F and G are ��dimensional vectors� U describes mass� impulses and energy� F
and G are �ow vectors� The �ow vectors are di
erent for the Euler and Navier�Stokes
equations� in both cases we have to add two equations to close the system�
The solution of these di
erential equations is calculated with an explicit Taylor�

Galerkin two step algorithm� Therefore� at �rst a Taylor series in time is developed�
which looks like

Un�� � Un ��t
�Un

�t
�
�t�

�

��Un

�t�
�O��t��� ���

and in other form

Un��
� Un � �U � �t

�

�t

�
Un �

�t

�

�Un

�t

�
�O��t��� ���



The expression in parenthesis can be seen as

Un���� � Un �
�t

�

�Un

�t
� ���

If we take no consideration of the O��t���term from equation ��� we achieve

�U � �t
�

�t
Un����� ���

With equation ��� and a replacement of the time derivation of equation ��� and ��� the
two steps of the Taylor�Galerkin algorithm are


Un���� � Un
�

�t

�

�
�F n

�x
�
�Gn

�y

�
���

and

�U � ��t

�
�F n����

�x
�
�Gn����

�y

�
� ���

The di
erential equations can be expressed in a weighted residual formulation using
triangular �nite elements with linear shape functions� Therefore� in the �rst step the
balance areas of the convective �ows for one element have to be calculated on the nodes
of each element� In the second step the balance area for one node is calculated with the
help of all elements which are de�ned with this node� A pictorial description of these
balance areas of the two steps is given in �gure ��

Nodes Element E

Predictor-Step (6):

E

N

Elements Node N

Corrector-Step (7):

Figure �
 Balance areas

The calculation with the �nite element method� which divides the calculation area
into triangles� leads to the characteristic summation of the element matrices into the
global mass matrix M and to the following equation system

M �U � �tRS�U
n�� ���

where RS is the abbreviation for the summation of the right hand sides of equations ���
for all elements� The inversion of the Matrix M is very time consuming and therefore



we use� with the help of the so called lumped mass matrix ML� the following iteration
steps


�U� �
�tRS

ML
� ���

�U��� � �U� �
�tRS �M�U�

ML
� ����

For the determination of �U three iteration steps are su�cient� If we consider station�
ary �ow problems only the initial iteration has to be calculated�
The time step �t must be adjusted in a way where the �ow of information does not

exceed the boundaries of the neighbouring elements of a node� This leads to small time
steps if instationary problems are solved �in the case of stationary problems we use a
local time step for each element�� In both cases the solution of a problem requires the
calculation of many time steps� so that the steps ���� ���� ��� and ���� are carried out
many times for a given problem� The resulting structure for the algorithm is a loop over
the number of time steps� where the body of this loop consists of one or more major
loops over all elements and some minor loops over nodes and boundaries �major and
minor in this context re�ects the di
erent runtimes spent in the di
erent calculations��
Another important characteristic of this method is the use of unstructured grids�

Such grids are characterized by various densities of the �nite elements for di
erent
parts of the calculation area� The elements of an unstructured grid di
er in both size
and number of adjacent elements� which can result in a very complex grid topology�
This fact is one main reason for the di�culties arising in constructing an e�cient parallel
algorithm�
The main advantage of unstructured grids is their ability to adapt a given �ow� To

get a high resolution of the details of a �ow� the density of the grids must only be
increased in the interesting parts of the domain� This leads to a very e�cient use of a
given number of elements� One problem arising in this context is the fact that in most
cases the details of a �ow are the subject of investigations� so that it is impossible to
predict the exact regions� where the density of the grid has to be increased� A solution
of this problem is a so called adaptive grid re�nement� where the calculations start with
a grid with no or little re�nements� As the calculations proceed� it is now possible to
detect regions� where the density of the grid is not su�cient� These parts of the grid will
then be re�ned and the calculations proceed with the re�ned grid� These re�nement
step is repeated until the quality of the solution is su�cient�

� Parallelization

If we are looking for parallelism in this algorithm we observe that the results of one
time step are the input for the next time step� so the outer loop has to be calculated
in sequential order� This is not the case for the inner loops over elements� nodes and
boundaries which can be carried out simultaniously� So the basic idea for a parallel
version of this algorithm is a distributed calculation of the inner loops� This can be
achieved by a so called grid division� where the �nite element grid is partitioned into
sub grids� Every processor in the parallel system is then responsible for the calculations
on one of these sub grids� Figure � shows the implication of this strategy on the balance
areas of the calculation steps�



El. 1, 4 Proc. 1

El. 2, 3, 5, 6 Proc. 2

A

B

C

1

2

3

4

5
6

2

3

5
6

A

B

C

1

4

A

B

C

Figure �
 Grid division

The distribution of the elements is non overlapping� whereas the nodes on the border
between the two partitions are doubled� This means that the parallel algorithm carries
out the same number of element based calculations as in the sequential case� but some
node based calculations are carried out twice �or even more times� if we think of more
complex divisions for a larger number of processors�� Since the major loops are element
based� this strategy should lead to parallel calculations with nearly linear speedup�
One remaining problem is the construction of a global solution out of the local sub grid
solutions� In the predictor step the �ow of control is from the nodes to the elements�
which can be carried out independently� But in the corrector step we have to deal with
balancing areas which are based on nodes which have perhaps multiple incarnations�
Each of these incarnations of a node sums up the results from the elements of its sub
grid� whereas the correct value is the sum over all adjacent elements� As �gure � shows�
the solution is an additional communication step where all processors exchange the
values of common nodes and correct their local results with these values�

N1
N2

N3

E

N1

N4

E2

N3

local nodes local elements

Predictor-Step (6):

N1
N2

N3

E

N1

N4

N3

E2

local elements local nodes

external nodes local nodes

Corrector-Step (7):

Figure �
 Parallel calculations

This approach� where the sequential algorithm is used on distributed parts of the data
sets and where the parallel and the sequential version are arithmetically equivalent� is
usually described with the key word data decomposition� Other domain decomposition

approaches have to deal with numerically di
erent calculations in di
erent parallelel
cases� and have to pay special attention to numerical stability� In the case of implicit
algorithms it is common to make a division of the grid nodes� due to the structure



of the resulting system of linear equations� which have to be solved in parallel� The
main advantage of the explicit algorithm used here is the totally local communication
structure� which results in a higher parallel e�ciency� specially for large numbers of
processors�
This structure implies a mimd architecture and the locality of data is exploited best

with a distributed memory system together with a message passing environment� This
special algorithm has a very high communication demand� because in every time step for
every element loop an additional communication step occurs� An alternative approach
in this context is an overlapping distribution� where the subgrids have common elements
around the borders �see ��	�� This decreases the number of necessary communications
but leads to redundant numerical calculations� We decided to use non�overlapping
divisions for two reasons
 First they are more e�cient for large numbers of subgrids
�and are therefore better suited for massively parallel systems�� and the other reason is
that we want to use adaptive grids� The required dynamic load balancing would be a
muchmore di�cult task for overlapping subgrids� The only drawback of our approach is
that to obtain high e�ciencies a parallel system with high communication performance
is required� so it will not work e�g� on workstation clusters� Our current implementation
is for Transputer systems and uses the Parix programming environment� which supplies
a very �exible and comfortable interprocessor communication library� This is necessary
if we think of unstructured grids which have to be distributed over large processor
networks leading to very complex communication structures�

� Grid division

If we now look at the implementation of the parallel algorithm� two modules have to be
constructed� One is the algorithm running on every processor of the parallel system�
This algorithm consists of the sequential algorithm operating on a local data set and
additional routines for the interprocessor communication� These routines depend on
the general logical processor topology� so that the appropriate choice of this parameter
is important for the whole parallel algorithm� In Parix this logical topology has to be
mapped onto the physical topology which is realized as a two�dimensional grid� For
two�dimensional problems there are two possible logical topologies
 one�dimensional
pipeline and two�dimensional grid� They can be mapped in a canonical way onto the
physical topology� so that we have implemented versions of our algorithm for both
alternatives�
The second module we had to implement is a decomposition algorithm which reads

in the global data structures and calculates a division of the grid and distributes the
corresponding local data sets to the appropriate processor of the parallel system� The
whole algorithmic structure is shown in �gure �� where we can also see that a given
division often requires interprocessor connections� which are not supplied by the basic
logical topology� These connections are built dynamically with the so called virtual
links of Parix and collected in a virtual topology�
The essential part of the whole program is the division algorithm which determinates

the quality of the resulting distribution� This algorithm has to take di
erent facts
into consideration to achieve e�cient parallel calculations� First it must ensure that
all processors have nearly equal calculation times� because idle processors slow down
the speedup� To achieve this it is necessary �rst to distribute the elements as evenly



Verteilung der

lokalen Teilnetze

Eingabe der globalen

Netz-Geometrie

der Daten

Weiterleiten

xxx

Graphik-Tool

Figure �
 Decomposition algorithm

as possible and then minimize the overhead caused by double calculated nodes and
the resulting communications� A second point is the time consumed by the division
algorithm itself� This time must be considerably less than that of the actual �ow cal�
culation� Therefore we cannot use an optimal division algorithm� because the problem
is np�complete and such an algorithm would take more time than the whole �ow cal�
culation� For this reason we have to develop a good heuristic for the determination of
a grid division� This task is mostly sequential and as the program has to deal with the
whole global data sets we decided to map this process onto a workstation outside the
Transputer system� Since nowadays such a workstation is much faster than a single
Transputer� this is no patchedup solution� but the performance of the whole calculation
even increases�
According to the two versions for the parallel module� we also have implemented two

versions for the division algorithm� Since the version for a one�dimensional pipeline is
a building block for the two�dimensional case� we present this algorithm �rst


Phase �� calculate element weights

calculate virtual coordinates

Phase �� find element ordering with small bandwidth

a� use virtual coordinates for initial ordering

b� optimize bandwidth of ordering

Phase �� find good element division using ordering and weights

Phase �� optimize element division using communication analysis



The division process is done in several phases here
 an initialization phase ��� cal�
culates additional information for each element� The weight of an element represents
the calculation time for this special element type �these times are varying because of
special requirements of e�g� border elements�� The virtual coordinates re�ect the posi�
tion where in the processor topology this element should roughly be placed �therefore
the dimension of this virtual space equals the dimension of the logical topology�� These
virtual coordinates �here it is actually only one coordinate� can be derived from the
real coordinates of the geometry or from special relations between groups of elements�
An example for the latter case are elements belonging together because of the use of
periodic borders� In this case nodes on opposite sides of the calculation domain are
strongly coupled and this fact should be re�ected in the given virtual coordinates�
Before the actual division an ordering of the elements with a small bandwidth is

calculated �phase ��� This bandwidth is de�ned as the maximum distance �that is
the di
erence of indices in the ordering� of two adjacent elements� A small bandwidth
is a requirement for the following division step� Finding such an ordering is again
a np�complete problem� so we can not get an optimal solution� We use a heuristic�
which calculates the ordering in two steps� First we need a simple method to get an
initial ordering �a�� In our case we use a sorting of elements according to their virtual
coordinates� In the second step �b� this ordering is optimized e�g� by exchanging pairs
of elements if this improves the bandwidth until there is no more exchanging possible�
With the received ordering and the element weights the actual division is now calcu�

lated� First the elements are divided into ordered parts with equal weights �phase ���
Then this division is analysed in terms of resulting borders and communications and is
optimized by reducing border length and number of communication steps by exchanging
elements with equal weights between two partitions �phase ���
If we now want to construct a division algorithm for the two�dimensional grid topology

we can use the algorithm described above as a building block� The resulting algorithm
has the following structure


Phase � �initialization� similar to �D�algorithm

for �processors in x�dimension do

calculate meta�division M

using phases � and � of �D�algorithm

divide meta�division M in y�dimension

using phases � and � of �D�algorithm

Phase � �optimization� similar to �D�algorithm

The only di
erence between the one and the two�dimensional version of the initializa�
tion phase is the number of virtual coordinates which here of course is two� Phase � has
the same task which is much more complex in the two�dimensional case� The middle
phase here is a two stage use of the one�dimensional strategy� where the grid is �rst cut



in the x�dimension and then all pieces are cut in the y�dimension� This strategy can
be substituted by a sort of recursive bisectioning� where in every step the grid is cut
into two pieces in the larger dimension and both pieces are cut further using the same
strategy�

� Adaptive re�nement and dynamic optimization

The parallelization approach described in the last two sections is well suited for �xed
grids� which remain constant through all calculation steps� We will now introduce a
simple� but e
ective method for an adaptive grid re�nement and an improvement of
the parallel algorithm which takes into account that the work load for each processor
has changed after every re�nement step� Before we can describe the algorithms� some
questions have to be answered
 what does re�nement mean exactly� which parts should
be re�ned� and how can we construct the new� re�ned grid�

� Re�nement in our case means the splitting of elements into smaller elements�
which replace the original elements�

� The question� which parts should be re�ned now turns into the selection of el�
ements that should be re�ned� Therefore we choose for a given �ow problem a
characteristic function� e�g� the pressure �eld� We then look for elements� where
the gradient of this function exceeds a given bound�

K1

K2 K3

K4 K6

K5

E1

E2 E3
E4

nodes:      3 old -> 6 new
elements: 1 old -> 4 new

K1

K2 K3

K4

E1

E2

E3

elements: 1 old -> 3 new
nodes:      3 old -> 4 new

Figure �
 Splitting of an element

� How should these elements be split into smaller ones� In �gure � two possibilities
are shown
 Using the left alternative leads to numerical problems� caused by the
shape of the resulting triangles� Especially if an element is re�ned several times�
the new grid nodes will be placed near to the remaining sides leading to very �at
triangles� which should be avoided� So we must use the right alternative� which
leads to the problem that the new nodes are placed on the edges of a triangle� This
would result in an inconsistent grid� because all nodes must be corners of elements�
The solution of this problem is an additional splitting of elements with such edges�
Elements with two or three re�ned edges must be split into four elements �as if
they where originally selected for re�nement�� Elements with only one re�ned
edge must be split into two elements in a canonical way� This additional splitting



of elements can lead to new elements with nodes on their edges� so the process
has to be repeated until no more splitting is necessary�

� How can we construct the new grid� Every split element will be replaced by one
of the new elements� the remaining new elements will be added to the element list�
All new nodes are added to the node list and all new border nodes and elements
are added to the appropriate lists� A new local time step for every element must
be calculated and in the case of an instationary solution a new global time step
must be calculated from the local time steps� After this some derived values like
element sizes have to be reinitialized and then the calculations can continue�

Now we can formulate the re�nement step


calculate reference function F

Delta 	 �Max�F� � Min�F�� 
 refine rate

for �El in element�list�

dF 	 local gradient of F in El

if �dF � Delta�

mark El with red

else

mark El with white

end�if

end�for

mark all elements with nodes on edges�

with yellow for full refinement

with green for half refinement

refine all elements full or half according to their colour

construct new node� and element�lists

reinitialize all dependent variables

All steps can be implemented straightforward with one exception
 the colouring of
the elements that must be re�ned to get a consistent grid� This can be done e�ciently
with the following recursive algorithm


for �El in element�list�

if �El is marked red�

mark neighbours�El�

end�if

end�for



mark neighbours�El��

for �E in neighbour�elements�El��

if �E is marked white�

mark E with green

else if �E is marked green�

mark E with yellow

mark neighbours�E�

end�if

end�for

end�mark neighbours

To insert this re�nement step in the parallel algorithm� we have to analyse the dif�
ferent parts for parallelism


calculate reference function F

local data� fully parallel� no communication
Delta 	 �Max�F� � Min�F�� 
 refine rate

local data� global min�max� mostly parallel� global communication
mark elements with red or white

local data� fully parallel� no communication
mark additional elements with yellow or green

global data� sequential� global communication �collection�
refinement of elements

global data� sequential� global communication �broadcast�
construct new node� and element�lists

local data� fully parallel� no communication
reinitialize all dependent variables

local data� fully parallel� local communications

We can see that most of the parts can be performed in parallel with no or little
communication� The only exception is the additional colouring of elements and the
construction of new elements and nodes� These parts operate on global data struc�
tures� so that a parallel version of them must lead to a very high degree of global
communication� As these parts need only very little of the time spent on the complete
re�nement step� we decided to keep this parts sequential� All necessary data is collected
from one processor� the two steps are processed� and the resulting data is broadcasted
to the appropriate processors�
For a typical �ow calculation up to �ve re�nement steps are su�cient in most cases�

so that the lack of parallelism in the re�nement step decribed above is not very prob�
lematic� Much more important is the fact that after a re�nement step the work load of
every processor has changed� As the re�nement takes place in only small regions there
are a few processors with a load that is much higher than the load of most of the other
processors� This would not only slow down the calculations� but can lead to memory



problems if further re�nements in the same region take place� The solution of this prob�
lems is a dynamic load balancing� where parts of the sub grids are exchanged between
processors until equal work load and nearly equal memory consumption is reached�
The load is obtained by simply measuring the cpu�time needed for one time step

including communication times but excluding idle times� The items that could be
exchanged between processors are single elements including their nodes and all the
related data� To achieve this e�ciently� we had to use dynamic data structures for all
element and node data� There is one data block for every node and every element�
These blocks are linked together in many di
erent dynamic lists� The exchange of one
element between two processors is therefore a complex operation
 the element has to
be removed from all lists on one processor and must be included in all lists on the other
processor� Since nodes can be used on more than one processor� the nodes belonging to
that element must not be exchanged in every case� It must be checked� whether they
are already on the target processor and if other elements on the sending processor will
need them� too� Nodes not availiable on the target processor must be sent to it and
nodes which are no longer needed on the sending processor must be deleted there�

step n (all communications) step n+1 (all communications)

Figure �
 Areas for dynamic load balancing

One remaining problem is to �nd an e�cient strategy for the exchange of elements�
A good strategy should deliver an even load balance after only a few steps and every
step should be �nished in a short time� As elements can only be exchanged between
direct neighbours� a �rst approach was a local exchange between pairs of processors�
This results in fast exchange steps� but shows a bad convergence behaviour� A global
exchange would converge very fast� but at the cost of the lack of any parallelism� We
will present here a semi�global strategy� where the balancing is carried out along the
rows and columns of the processor grid� As shown in �gure �� the balancing areas are
alternating all rows and all columns� where every row �column� is treated independent
from all other rows �columns�� A single row �column� is interpreted as a tree with the
middle processor as the root and then we can use a modi�cation of a tree balancing
algorithm developed for combinatorical optimization problems ��	�
This algorithm uses two steps
 in a �rst step information about the local loads of the

tree is moving up to the root and the computed optimal load value is propagated down
the tree� In a second step the actual exchange is done according to the optimal loads



found in the �rst step� The �rst step has the following structure� where num procs is
the number of processors in the tree �� row or column� and load move direction is the
load that has to be moved in that direction in the second step


if �root�

receive load sub l �load of left subtree�

receive load sub r �load of right subtree�

global load 	 local load � loads of subtrees

load opt 	 global load � num procs

send load opt to subtrees

load move l 	 load opt 
 num sub l � load sub l

load move r 	 load opt 
 num sub r � load sub r

else

receive load sub from subtree �if not leaf�

load sub n me �	 load sub

send load sub n me to parent node

receive load opt from parent node

send load opt to subtree �if not leaf�

load move sub 	 load opt 
 num sub � load sub

load move top 	 load sub n me � �num sub � �� 
 load opt

end�if

The second step is very simple
 all processors translate the loads they have to move
into the appropriate number of elements and exchange these elements� For the decision�
which element to send in a speci�c direction� the virtual coordinates of this element are
looked up and the element with the greatest value is choosen�

� Results

The algorithms described in the previous chapters were tested with a lot of di
erent
grids for various �ow problems� As a kind of benchmark problem we use the instationary
calculation of inviscid �ow behind a cylinder� resulting in a vortex street� One grid for
this problem was used for all our implementations of the parallel calculations� This grid
has a size of about �� ��� grid points which are forming nearly �� ��� elements �P���
Other problems used with the adaptive re�nement procedure are stationary turbine
�ows with grids of di
erent sizes� all of them using periodic borders�
All measurements were made with a ���� processor system located at the �PC�� of

the University of Paderborn� It consists of T��� Transputers� each of them equipped
with � MByte local memory and coupled together as a two�dimensional grid� Our
algorithms are all coded in Ansi�C using the Parix communication library�



0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40

min
med
max

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

min
med
max

Figure �
 Di
erent load balancing strategies

First we will present some results for the dynamic load balancing� Figure � shows
the di
erent convergence behaviour of two di
erent strategies� To investigate this� we
used a start division of our reference problem with an extremely bad load balancing�
The left picture shows the results of a local strategy� where the balance improves in the
�rst steps� but stays away from the optimum for a large number of optimization steps�
The right picture shows the e
ects of the described semi�global balancing� where after
two steps the balance is nearly optimal�

Figure �
 Grid and isobars after �ve re�nement steps �complete and zoomed�

An example for the adaptive re�nement procedure is shown in �gure �� where the grid
and the pressure �eld around a turbine is shown after �ve re�nement steps� One can see
the high resolution of the two shocks made visible by the adaptive re�nements� Without
re�nement one of these e
ects can only be guessed� the other is missing completely�



0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000

min
med
max

Figure �
 Load balancing for adaptive re�nements

The development of the corresponding loads can be seen in �gure �� After each
re�nement step four balancing steps were carried out� using the semi�global strategy�
The picture shows the e�cient and fast balancing of this method�
At last we will present results for large processor numbers� In �gure �� the speedups

for some parameter settings of our reference problem are shown� In the speedup curves
the di
erence between the logical topologies �D�pipeline and �D�grid is shown� In the
left part of the picture we can see that for up to ��� processors we achieve nearly linear
speedup with the grid topology� whereas the pipe topology is only linear for a maximum
of ��� processors� If we increase the size of the problem �P��� the speedups are closer
to the theoretical values� which proofs the scalability of the parallelization approach�

�

�� ��� ��� ��� n

�

��

���

���

���

Sn

Pipe �P��
 �
Grid �P��
 �
Grid �P��
 �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
� ��

�

�

�

� ���

�

�

�

� ���

�

��� ��� ��� ���� n

�

���

���

���

����

Sn

Pipe �P��
 �
Grid �P��
 �
Grid �P��
 �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � ���
�

�
�

� ���
�

�

�

� ���

Figure ��
 Speedups for di
erent topologies

If we increase the number of processors �right picture� we observe that the grid
topology again is superior to the pipe topology� but the increase of speedup is no longer



linear� It is a common problem for most parallel algorithms that for a �xed problem
size there is always a number of processors where the speedup is no longer increasing
proportionally to the number of processors� If we want to get the same e�ciencies as
for ��� processors we have to use grids with approximately �� ��� elements� This was
impossible on the used T��system� because such problems are too large for it� The
biggest problem that �ts into the � Mbyte nodes has about �� ��� elements �P��� so
that the speedups for ���� processors are limited on this machine� Nevertheless� the
increase of speedup to ��� shows the scalability of our algorithm again�

� Conclusion

In this paper we have introduced a parallelization for the calculation of �uid �ow prob�
lems on unstructured grids� An existing sequential algorithm has been adjusted for
Transputer systems under Parix and investigations on the parallelization of this prob�
lem have been made� For two logical processor topologies we have developed di
erent
grid division algorithms and compared them for some benchmark problems� The grid
topology has shown its superiority over the pipe topology� This was expected since a
two�dimensional topology must be better suited for two�dimensional grids than a one�
dimensional topology which is not scalable for large processor numbers� The speedup
measurements on a ���� Transputer cluster showed the general usefulness of the choosen
approach for massively parallel systems�
We presented an adaptive re�nement procedure which is used for the solution of �ow

problems with a priori unknown local e
ects� For the parallel version of this procedure
we showed the need for a dynamic load balancing� A semi�global strategy for this
balancing was described in detail� We presented results for the performance of this
strategy and compared it with a local strategy� We showed the excellent convergence
behaviour of our strategy and the usefulness of the dynamic load balancing together
with the adaptive re�nement�
Dynamic load balancing is fully parallel and hardware independent� so that changes

of the basic hardware nodes can be done without changing the developed algorithm�
To exploit this advantage of our algorithms� they must be implemented as portable as
possible� To achieve this our further research will concentrate on porting the current
implementation to mpi and on investigations for di
erent hardware platforms�

References

��	 Armin Vornberger� Str�omungsberechnung auf unstrukturierten Netzen mit der

Methode der �niten Elemente� Ph�D� Thesis� RWTH Aachen� ����

��	 W�Koschel� A�Vornberger� Turbomachinery Flow Calculation on Unstructured

Grids Using the Finite Element Method� Finite Approximations in Fluid Mechan�
ics II� Notes on Numerical Fluid Mechanics� Vol� ��� pp� �������� Aachen� ����

��	 F� Lohmeyer� O�Vornberger� K� Zeppenfeld� A�Vornberger� Parallel Flow Calcula�

tions on Transputers� International Journal of NumericalMethods for Heat � Fluid
Flow� Vol� �� pp� �������� ����



��	 F� Lohmeyer� O�Vornberger� Flow Simulation with FEM on Massively Parallel Sys�

tems� Computational Fluid Dynamics on Parallel Systems� Notes on Numerical
Fluid Mechanics� Vol� ��� pp� �������� Braunschweig� ����

��	 S� Lanteri�Unstructured CFD Computations on M�I�M�D� Systems� Computational
Fluid Dynamics on Parallel Systems� Notes on Numerical Fluid Mechanics� Vol� ���
pp� �������� Braunschweig� ����

��	 Message Passing Interface Forum�MPI� A message�passing interface standard� Uni�
versity of Tennessee� Knoxville� TN� ����

��	 M�B�ohm� E� Speckenmeier� E�ziente Lastausgleichsalgorithmen� Proceedings of
TAT���� Aachen� ����


