
Procs� ZEUS��� Workshop on Par� Programming and Computation� Link�oping� Sweden �������

Portability versus E�ciency�

Parallel Applications on PVM and Parix

Alexander Reinefeld Volker Schnecke

Center for Parallel Computing Mathematik�Informatik

Universit�at Paderborn Universit�at Osnabr�uck

ar�uni�paderborn�de volker�informatik�uni�osnabrueck�de

Abstract

Analogous to the shift from assembler language programming to the third�

generation languages in the early years of computer science� we are currently wit�

nessing a paradigm change towards the use of portable programming models in

parallel high�performance computing� Like before� the use of a high�level program�

ming environment must be paid for by a reduced system performance�

But how much does portability cost in practice� Is it worth paying that price�

What e�ect has the choice of the programming model on the algorithm architecture�

In this paper� we attempt to answer these questions by comparing two applica�

tions from the domain of combinatorial optimization that have been implemented

with the Parix and PVM programming models� Performance benchmarks have

been run on three di�erent systems� a massively parallel transputer system with

relatively slow T��	�processors� a moderately parallel Parsytec GC
PowerPlus sys�

tem with powerful �� MFLOPS processors� and a UNIX workstation cluster con�

nected by a ��Mbps LAN� While the Parix implementations clearly turned out to be

fastest� PVM gives portability at the cost of a small� acceptable loss in performance�

� Introduction

Contemporary parallel computing systems are strikingly diverse in their architectures

and operating systems� A variety of interconnection networks can be found in today�s

most successful commercial machines� hypercube �nCube�� �D�grid �Intel Paragon�

Parsytec GC�� ring�crossbar combination �Convex SPP	


�� ��network �IBM SP���

fat tree �CM��� hierarchical rings �KSR��� and D�torus �Cray TD�� All of them have

their speci�c advantages and it is still an open question which topologies will �survive�

in the future�

	



Unfortunately� the programming interfaces are also very dissimilar� making it di�cult

to port a given code from one hardware platform to another� As it seems� portability

can only be achieved by the use of vendor independent programming environments

like PVM ��� ���� MPI �	
� ��� PARMACS� P�� Zipcode� Express� and Linda� �For an

overview on programming environments see �����

Portability and scalability are the keywords of this paper� Ideally� a parallel imple�

mentation would meet both properties� but in practice interdependencies make this

impossible� We compared the performance of two application programs running on

Parix �PARallel extensions to UnIX� and PVM �Parallel Virtual Machine�� Three dif�

ferent hardware platforms have been used in our experiments� A �	��node transputer

system� a Parsytec GC�PP with �� PowerPC��
	 processors and a UNIX workstation

cluster with �� SUN SparcStations� Our experiments give answers to the following

questions� Is there any impact of the choice of the programming model on the archi�

tecture of the application program� How fast is PVM as compared to Parix� To what

extent are PVM programs portable and scalable�

� Applications

As an application problem domain� we have chosen the class of discrete optimization

problems� which can be de�ned in terms of �nding a solution path in a tree or graph from

an initial �root� state to a goal node� Many applications in planning and scheduling can

be formulated with this model� the cutting stock problem ���� the bin packing problem�

vehicle routing� VLSI �oorplan optimization �	� ���� satis�ability problems� the traveling

salesman problem ���� the N�N �puzzle ���� and partial constraint satisfaction problems

��� All of them are known to be NP�hard�

For our benchmarks� we have chosen two typical applications with di�erent solution

techniques� the VLSI �oorplan optimization problem� which is solved with a depth��rst

branch�and�bound strategy� and the N �N�puzzle� which is solved with an iterative�

deepening search� Both are based on depth��rst search �DFS�� which traverses the

decision tree in a top�down manner from left to right� DFS is commonly used in

combinatorial optimization problems� because it needs only O�d � w� storage space in

trees of depth d and width w�

��� VLSI Floorplan Optimization

The �oorplan area optimization ��� ��� is a stage in the design of VLSI chips� Here

the relative placements and areas of the building blocks of a chip are known� but their

exact dimensions can still be varied over a wide range� A �oorplan is represented by two

dual polar graphs G � �V� E� and H � �W�F�� and a list of potential implementations

for each block� As shown in Figure 	� the vertices in V and W represent the vertical

�



B1
B2

B3
B4

v1 v2 v3

w1

w2

w3

w4

v1

v2

v3

w1

w2

w3

w4

Figure 	� A �oorplan and the graphs G and H

and horizontal line segments of the �oorplan� There exists an edge e � �v�� v�� in

the graph G� if there is a block in the �oorplan� whose left and right edges lie on the

corresponding vertical line segments� For a speci�c con�guration �i�e� a �oorplan with

exact block sizes�� the edges are weighted with the dimensions of the blocks in this

con�guration� The solution of the �oorplan optimization problem is a con�guration

with minimum layout area� given by the product of the longest paths in the graphs G
and H�

Our implementation builds a tree where the leaves are complete con�gurations and

the inner nodes at depth d represent partial �oorplans consisting of blocks B� � � � Bd�

The depth��rst branch�and�bound �DFBB� solution algorithm employs a heuristic cost�

function to eliminate unnecessary parts of the search space that are known not to

contain an optimal solution� When a new �possibly non�optimal� solution has been

found� the search continues with the improved cost�bound� now pruning all subtrees

with cost�estimates higher than the new cost�bound� Newly established cost�bounds

are broadcasted� so that all processors share the best available bound at any stage in

the search�

��� N �N�Puzzle

Applications with bad initial cost�bounds and many alternatives in the decision trees

are solved with heuristic search algorithms like A� �		� 	� and IDA� ���� One such

example is the N �N�puzzle ��� 		� 	�� Here� a given initial con�guration of tiles in a

squared tray of size N �N must be re�arranged with the fewest number of moves into

a given goal con�guration� No e�ective upper cost�bounds are known for this problem�

and hence it cannot be solved with DFBB� Even the relatively small 	��puzzle �N � ��

has a search space of 	���� � 	
�� states� While it would seem easy to obtain any

solution� �nding an optimal ��shortest� solution is NP �complete �	��� In general� it

takes some hundred million node expansions to solve a random problem instance of the

	��puzzle� using the Manhattan distance �the sum of the minimumdisplacement of each





tile from its goal position� as a heuristic estimate function�

Iterative�deepening A	 �IDA�� ��� simulates a best��rst search by a series of depth��rst

searches with successively increased cost�bounds� Its low space overhead of O�d� makes

it feasible in applications where A� �		� cannot be used due to memory limitations�

With a non�overestimating heuristic estimate function� IDA� is guaranteed to �nd an

optimal �shortest� solution ���� In contrast to DFBB� IDA� halts after �nding a �rst

solution� because optimality is guaranteed by the iterative approach with the minimal

cost�bound increments ����

� Parallel Depth�First Search

Depth��rst search can be performed in parallel by partitioning the search space into

many small� disjunct parts �subtrees� that can be explored concurrently� We have

developed a scheme called search�frontier splitting �	�� that can be applied to breadth�

�rst�� depth��rst� and best��rst search� It partitions the search space into g subtrees

that are taken from a �search�frontier� containing nodes n with the same cost value

f�n�� Search�frontier splitting has two phases�

	� Initially� all processors generate �synchronously� the same �search�frontier� and

store the nodes in their local memories� A �search frontier� is a level in the tree

where all nodes have the same cost�value� Each node represents an indivisible piece

of work for the next phase� Hence� on a p�processor system� the search frontier

should be chosen large enough� so that it contains at least p nodes��

�� In the asynchronous search phase� each processor selects a disjunct set of frontier

nodes and expands them in depth��rst fashion� When a processor becomes idle�

it requests a work packet ��unprocessed frontier node� from another processor�

Work requests are forwarded from one processor to the next until one of them has

work to share� When there are no work packets left� the search space is exhausted

and the search is terminated� When a processor �nds a solution� all others are

informed by a broadcast�

Search�frontier splitting is a general scheme� It can be employed in depth��rst branch�

and�bound �DFBB� and in iterative�deepening depth��rst search �IDA��� In DFBB� the

search continues until all nodes have been either explored or pruned due to inferiority�

Newly established bounds are communicated to all processors to improve the local

bounds as soon as possible�

�It seems natural to generate the search frontier iteratively� by incrementing the cost�value by the

minimumamount until there are at least const�p entries in the frontier nodes array� In our experiments�

we have chosen const � ��

�



In the iterative�deepening variant� AIDA	 �	��� subsequent iterations are started on

the previously established frontier node arrays� Work packets change ownership when

they are sent to other processors� thereby improving the global load�balance over the

iterations� Lightly loaded processors� which have asked for work in the last iteration

will be better utilized in the next� As a consequence� the communication overhead

decreases during the search process �	���

� Parallel Implementations on Parix and PVM

We implemented the search�frontier splitting scheme on Parix and PVM using the VLSI

�oorplan optimization problem and the 	��puzzle as application domains�


�� Parix

PARIX �PARallel UnIX extensions� �	�� is the native operating system on Parsytec GC

systems� It provides UNIX functionality at the front�end with library extensions for

the needs of the parallel system� The Parix software package comprises components

for the program development environment �compilers� tools� etc��� runtime environment

�libraries�� multi�user administration� and control�net software� Parix is available for a

variety of parallel Parsytec computers� At the Paderborn Center for Parallel Comput�

ing� we run Parix on

� a 	
���node transputer system GCel����
� where the T�
��nodes are intercon�

nected in a ��dimensional mesh topology�

� a medium size PowerXplorer with PowerPC �
	 application processors and T�
��

transputers for the communication�

� a high�performance GC�PowerPlus� with two PowerPC��
	 application processors

and four T�
� communication processors interconnected in a ��dimensional fat

mesh with � links in each direction�

A virtual topologies library ��
� �	� provides an optimal mapping of the application

process structure onto the underlying hardware interconnection structure� Based on

the virtual topologies� common global communication functions like broadcast� global

sum� min� max and barrier synchronization are available for groups of processes�

Algorithm Architecture on Parix� While in principle any of the Parix virtual topologies

could have been chosen for our implementation� it is clear that the torus� and ring�

embeddings yield lowest dilation and congestion on our �D hardware grid�

For the work distribution� we used a packet forwarding scheme� where the work re�

quests are forwarded to neighbored processors until either some work is sent back or

�



sender receiver

senderreceiver

receiver

sender

sender

worker request

work

work

request

receiver

Figure �� Process architecture on Parix

the message makes a full round through the system� thereby indicating that no work is

available� On a torus topology� requests are �rst forwarded along the horizontal ring�

If none of the processors has work to share� the request is then sent along the vertical

ring� see Figure �� This yields a wide�spread work distribution� while each processor

communicates only with a subset of �
p
p� � processors�

The right part of Figure � illustrates the process architecture of our Parix implemen�

tation� Each processor executes nine concurrent threads ��light weighted processes��

All threads run in the same context� that is� they share the same global variables de�

�ned by the main program� Hence� the worker and receiver threads have direct memory

access to the processor�s frontier node array for retrieving new work packets� Memory

contention is arbitrated by semaphores� The sender and receiver threads serve incoming

messages and send work requests on demand�


�� PVM

The Parallel Virtual Machine �PVM� is one of the most popular message passing mod�

els� PVM is public domain and can be obtained free of charge via ftp ���� PVM makes

a heterogeneous network of parallel and serial UNIX computers to appear as a sin�

gle concurrent computational resource� Controlled interaction of a heterogeneous set

of workstations is done via TCP�IP sockets or native MPP communication protocols�

with the possibility of dynamically adding more resources to the network as they are

needed�

Applications view PVM as a general and �exible parallel computing system that

supports the message�passing paradigm� PVM is not restricted to speci�c architec�

tures� Application programs may have arbitrary control and dependency structures

with arbitrary � and even dynamical � relationships among the parallel processes� This

allows the most general form of MIMD �resp� SPMD�� programming� Task granular�

�



worker

communicator

work work

requestrequestwork

request

Figure � Process architecture on PVM

ity� communication frequency and load balancing are completely at the disposal of the

programmer� There exist library calls for blocking and non�blocking send and receive

operations� Groups of processes can be de�ned for broadcasts� barrier synchroniza�

tion and other group functions� Release � provides features for the e�cient use of

architecture�dependent and low�level communication modes on parallel systems�

Algorithm Architecture on PVM� Only few modi�cations were necessary to adapt our

Parix application to the PVM programming model� Both models provide similar con�

structs for the communication interfaces� Compared to Parix� PVM is lacking a com�

mon �execution context� for sharing objects among tasks running on the same processor�

Therefore� we had to implement a mechanism for sharing the frontier nodes by explicit

message transfer� In PVM� all synchronization and information sharing is solely done

via messages� even when running on the same processor� While this is certainly the most

abstract �hardware independent� approach� it might cause unnecessary ine�ciencies�

In our implementation �Fig� � the frontier nodes array is maintained by the the

communicator task� When a worker task runs out of work� it sends a message to

its communicator executing on the same node� When there are no work packets left

in the frontier nodes array� the communicator task sends � as before � a request to

it neighboring processors� However� unlike in the Parix approach� work packets are

directly returned to the requester� This does not cause any extra programming e�ort�

because PVM implies a clique network� directly connecting every processor to every

other�

� Performance Comparison

We run two application programs �	��puzzle and �oorplan optimization� on three ma�

chines �GCel� GC�PP� UNIX workstation cluster� and two programming models �Parix

�



Parix PVM

p time sp eff time sp eff

�� �	� �� ��� �
 � ��

	�� �		 	�� ��� �
� 	
� �
�

��� 	
� �� ��� 	
� 	�� ���

�	� �	 �
� ��� �� ��	 ���

Figure �� GCel transputer system

Parix PVM

p time sp eff time sp eff

	� �	 	� ��� � 		 ���

	� �	 	� ��� � 	� �	�

�� � � ��� �� �
 ���

� 	 
 ��� � �� ���

�� �	 �� �� �� � ���

�� 	� �� �
� �	 �� ���

�� 	� �� �	� 	� �� ���

Figure �� GC�PowerPlus

and PVM�� Not counting the workstation experiments� for which only PVM was avail�

able� we run a total of 	
 benchmarks� From the bulk of statistical data� we selected

the most signi�cant results to be presented in the following sections�

�� Results for the ��Puzzle

Tables � and � show the results obtained with a subset of Korf�s standard random

problem instances of the 	��puzzle ��� on the GCel and GC�PP� For systems with p

processors� the total elapsed time� the speedup sp and the corresponding e�ciencies

eff are given� All times are wall�clock times� measured in seconds� Speedups and

e�ciencies are normalized to the fastest sequential Parix implementation�

With the Parix process model discussed above �Fig� ��� we achieved on both Parsytec

machines an almost perfect scalability ranging from ��� on the �small� systems to �
�

e�ciency on the larger networks� This is a remarkable result� considering that the

largest GCel con�guration comprises as many as �	� processors� while the GC�PP has

only �� PEs� The latter� however� is more powerful� resulting in a much faster execution

speed of only 	� seconds on the largest system� Clearly� for such short execution runs�

the presented speedups can hardly be improved�

With its �
 MFLOPS peak performance� a single GC�PowerPlus node is expected

to be approximately �
 times faster than a GCel�transputer node with its � MFLOPS�

In this special application� the speedup is even larger� We measured a performance

ratio of ��� On the other hand� the communication bandwidth of the GC�PP is only

� times higher than that of the GCel� Due to the worse communication�computation

performance ratio� it is clear� that the 	��puzzle application does not scale as well on

the larger GC�PP systems�

Being implemented �on top of Parix�� PVM requires some additional CPU�time for

the bookkeeping� bu�er�copying and function calls� For the larger GCel system� this

�



� � �� �� ��

processors p

�

��

��

s
p
e
e
d
u
p

��
���
��
��
��
��
��
���
��
��
��
���
��
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
���
��
��
��
��
���
��
��
��
���
��
���
���
���
��
���
���
��
���
���
��
���
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
���
��
���
����
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
���
��
���
���
��
����������
�������������

��������������
��������������

��������������
�������������

��������������
��������������

�������������
��������������

����� avg

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
�
��
��
�
��
��
�

��
��
��
��
�
��
��

��
��
��
��
��
���

����
���
���
���

��
����
���
���
�

��
����
���
����

��
��
��
��
�
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��������� ������������� ������������� ������������� ������������� ������������� best

���
���
���
����

��
���
����
���
�

��
���
���
����
�

��
���
���
���
��

���
���
���
���
�

��
���
���
���
��

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
����

���
���
����
���

��������
�����

�����
��������

������
�������

��������
�����

�����
��������

������
������ worst

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure �� PVM speedup on SUN SS	
�cluster� Ethernet

results in

	� increased communication latency due to the larger number of hops�

�� increased message tra�c due to the increased number of �ne�grained work packets�

� increased computing overhead� since the T�
� processors also perform routing�

Even so� the PVM performance losses seem to be acceptable for the medium sized

systems�

PVM�s availability and portability allowed us to develop our implementations on a

workstation cluster� while the production runs were performed on all kinds of paral�

lel systems� We also benchmarked a heterogeneous PVM environment� that allows a

collection of serial and parallel computers to appear as a single virtual machine� The

task management is done by a PVM daemon running on the UNIX front�end of the

parallel system� Since all communication is �rst checked whether its destination lies

�within� or �outside� the MPP system� the heterogeneous PVM cannot be as e�cient

as the homogeneous PVM discussed above� Performance results for the heterogeneous

PVM may be found in �	�� ����

Figure � illustrates the performance achieved on a cluster of SUN SparcStation�	
�

While all workstations are of the same model and speed� the measurements were taken

on busy systems with di�erent load factors and a busy Ethernet with several bridges�

This results in widely varying execution speeds� Figure � shows the average� the slowest

and the fastest of 	
 runs on the same sample problem set� As can be seen� the

initially good speedup seems to level o� when more than �
 workstations are employed�

The exact data indicates that this is due to the longer start�up times and increased

communication latencies�

�



� ��� 	�� 
�� ��� ���� ����

packet size in byte

�

���

	��


��

���

����

����

�	��

�
��

�sec

���������
��
���
��
���
��
���
��
���
��
�����
�������
������
������
�������
������
������
�������
������
������
�������
������
������
�������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
� GC�PP PVM

��
�
����
�
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�������
�������������������

������������������
������������������

�������������������
�����������
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
����
����
�����
����
����
�����
����
����
�����
����
� GC�PP Parix

�����
���
��
�
��

�
��
��
��
�
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
�
��

��
��
��
��
��
�
��

��
��
��
��
��
�
��

��
��
��
��
��
�
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
�
��
�� Xplorer PVM

��
���
��
��
���
�

��
��
��
���
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
�
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
�
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
�� Xplorer Parix

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� GCel PVM

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� GCel Parix

Figure �� Communication speed between neighbored nodes

�� Communication Speed of Parix and PVM

In a separate experiment� we benchmarked latency times and communication through�

put of Parix and PVM on the GCel� GC�PP and PowerXplorer� Figure � shows the

communication performance between neighbored processors for each of the systems�

The PVM times include complete packing and unpacking on both sides� sender and the

receiver�

The most apparent fact is� that in contrast to the other performance graphs� the

GC�PP curves are not straight� This is attributed to the �xed initial overhead required

for multiplexing the message among the four links of the communication subsystem�

The multiplexing is done by four dedicated T�
� communication processors� In practice�

the computing performance would greatly bene�t by latency hiding techniques� which

is not re�ected in these performance graphs� Hence� these graphs represent the worst

case�

For the systems with PowerPC �
	 processors �GC�PP and PowerXplorer�� the com�

munication throughput of PVM and Parix are very similar� Only for the GCel� there is

a larger discrepancy between Parix and PVM communication performance� illustrated

by the dotted line� This is caused by the GCel transputer nodes� which are by a factor

of �
 slower than the PowerPC nodes� Hence� it takes much longer on the GCel to

initiate a communication �function calls� data copying� etc��� Once the initial setup

is done� the same throughput is achieved on the GCel as on a PowerXplorer� Due

	




� � �
 �	 ��

processors p

�

�

�


�	

��

s
p
e
e
d
u
p

��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
� Parix

��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
��
��
���
��
��
���
��
���
��
��
���
��
��
���
��
��
���
��
���
��
��
���
��
��
���
��
��
���
��
���
��
��
�����
����
�����
����
�����
����
�����
����
�����
����
�����
����
�����
����
�����
����
����� PVM

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure �� VLSI �oorplan optimization on GC�PowerPlus

to the fat communication mesh� consisting of � links in each direction� the GC�PP

communication is faster�

�� Results on the VLSI Floorplan Optimization Problem

Figure � shows the results obtained with the VLSI �oorplan optimization algorithm�

We used a standard VLSI benchmark problem from ���� with �� building blocks and

six di�erent implementations per block� This gives a search space of ��� � 	
�� nodes�

Compared to the 	��puzzle application� more communication is necessary in the �oor�

plan optimization� because the solution speed depends much on the availability of e��

cient bound values� Each time a new bound is found by any of the worker tasks� it is

broadcasted to all others�

The Parix implementation uses a torus topology for submitting work requests and

for transferring work packets� Our PVM implementation� in contrast� makes use of the

implicit clique topology� A master process hands out work packets to the slaves which

search their assigned subtrees and broadcast newly found bound values�

As can be seen in Figure �� this simple farming approach yields su�cient performance

results on small systems with � �� processors� Beyond� a hierarchy of master processes

should be implemented to eliminate potential communication bottlenecks�

� Conclusions

We evaluated two programming models� PVM and Parix� on three hardware platforms

with two di�erent application programs� What are the lessons learned� Recalling the

title of our paper �Portability versus E�ciency��� we draw the following conclusions�

Portability� PVM provides a portable programming model for implementing parallel

applications on a wide variety of message�based MIMD systems� Many important scien�

ti�c and industrial applications have been ported to PVM with the expectation to gain

		



more independence from speci�c hardware platforms and vendors� First results from

the Esprit project EUROPORT indicate� that it is possible to execute large PVM appli�

cations on various systems� ranging from moderately parallel symmetric multiprocessor

systems to massively parallel systems with many hundred nodes�

Hardware independency� however� may tempt the programmer to use program fea�

tures that might later be found ine�cient on certain systems� Time�critical applications

may need post�optimization to exploit speci�c MPP system features� As an example�

PVM�s clique�structured communication pattern is tailored for bus�connected work�

station clusters �Ethernet� FDDI� ATM�� As seen above� clique communication poses

problems on massively parallel �D systems� where the communication latency depends

on the number of hops a message needs to reach the recipient� Here� nearest neighbor

communication should be used instead�

E�ciency� Executing on top of the native operating system� the PVM programmming

interface clearly induces additional overheads� The slower the application processor� the

more time is spent in setting up the communication between processors� Compared to

Parix� PVM needs more bookkeeping for the management of communication bu�ers�

for any necessary data conversions and for additional system calls�

The performance losses are especially pronounced in the results obtained on the large

transputer system �Table ��� Here� the PVM implementation took �� seconds on a �	�

node�system� while the Parix implementation computed the same solution in only �	

seconds�

Due to unpredictable execution times� time�critical interactive applications should

better not be run on workstation clusters� Di�erent processor capabilities may induce

load imbalances and the system load might change dynamically during the program

runtime� While the di�erent processor speeds did not a�ect the performance of our

PVM implementations �which includes a dynamical load balancing strategy�� we still

observed widely varying execution times from one execution run to the next�

Process Architecture� The choice the �best� process architecture for a given application

may be in�uenced by the hardware architecture and the programming model�

Compared to the Parix implementation� PVM needs more e�ort to implement a mech�

anism for sharing work�packets among the �communicator�� and �worker tasks� executing

on the same node� In Parix� all threads run in the same context and share the same

global variables de�ned by the main program� Hence� all threads have direct memory

access to the same �work packet array� maintained on a node� Memory contention is

arbitrated by semaphores� In PVM� in contrast� all communication is performed via

explicit message transfer � regardless whether it is a long distance communication or a

communication within tasks running on the same processor�

	�



Typically� the PVM process architecture is designed without knowing the topology

of the target hardware system� Since PVM does not provide information about the

location of the tasks in the �hardware�� network� fast communication �e�g�� nearest

neighbor communication� is hard to implement� The virtual topologies provided by

PARMACS and MPI allow more e�cient mappings of tasks to processors� While such

mapping functions can also be implemented by matching the Parix process descriptors

to the PVM task identi�ers� such programming tricks clearly violate our ultimate goal

of portability�

Acknowledgements

Thanks to our local PVM expert Axel Keller� who helped a lot in getting our experi�

ments done within a tight time�frame� Also thanks to Jing Li for implementing parts

of the PVM �oorplan optimizer�

References

�	� S� Arvindam� V� Kumar and V� Rao� E�cient parallel algorithms for searching

problems� Applications in VLSI CAD� rd Symp� Frontiers Mass� Par� Comp��

Maryland �	��
�� 	���	���

��� N� Christo�des and C� Whitlock� An algorithm for two�dimensional cutting prob�

lems� Operations Research ��� 	 �	����� 
����

�� E�C� Freuder and R�J� Wallace Partial constraint satisfaction� Arti�cial Intelligence

���	����� �	��
�

��� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek and V� Sunderam� PVM

� User�s Guide and Reference Manual� Oak Ridge National Laboratory� Knoxville�

TN� Techn� Rep� ORNL�TM�	�	��� May 	���� ftp� cs�utk�edu�

��� R� Hempel� A�J�G� Hey� O� McBryan and D�W� Walker �eds��� Special Issue on

Message Passing Interfaces� Parallel Computing �
���	�����

��� M� Held and R�M� Karp� The traveling salesman problem and minimum spanning

trees� Operations Research 	� �	��
�� 		��		���

��� R�E� Korf� Depth��rst iterative�deepening� An optimal admissible tree search� Art�

Intell� �� �	����� ���	
��

��� V� Kumar and V� Rao� Scalable parallel formulations of depth��rst search� Kumar�

Gopalakrishnan� Kanal �eds��� Par� Alg� for Mach� Intell� and Vision� Springer

�	��
�� 	��	�

	



��� V� Kumar� A� Grama� A� Gupta and G� Karypis� Introduction to Parallel Com�

puting� Design and Analysis of Algorithms� Benjamin�Cummings Publ�� Redwood

City� CA �	�����

�	
� Message Passing Interface Forum� MPI� A message�passing interface standard�

Comp Sc� Dept�� Univ� Tennessee� Knoxville� TN� CS�����
� April 	����

�		� N�J� Nilsson� Principles of Arti�cial Intelligence� Tioga Publ�� Palo Alto� CA� 	��
�

�	�� Parsytec� Parix V��� PowerPC Software Documentation �Dec� 	�����

�	� J� Pearl� Heuristics� Intelligent Search Strategies for Computer Problem Solving�

Addison�Wesley� Reading� MA� �	�����

�	�� V�N� Rao� V� Kumar and K� Ramesh� A parallel implementation of iterative�

deepening A	� AAAI���� ��������

�	�� V�N� Rao and V� Kumar� On the e�ciency of parallel backtracking� IEEE Trans�

Par� Distr� Systems ����	���� �������

�	�� D� Ratner and M� Warmuth� Finding a shortest solution for the N �N extension

of the ��puzzle is intractable� AAAI���� 	���	���

�	�� A� Reinefeld and T�A� Marsland� Enhanced iterative�deepening search� IEEE Trans�

Pattern Analysis Mach� Intell�� IEEE�PAMI� July 	����

�	�� A� Reinefeld and V� Schnecke� Work�load balancing in highly parallel depth��rst

search� Procs� Scalable High Perf� Comp� Conf� SHPCC���� Knoxville� �����
�

�	�� A� Reinefeld and V� Schnecke� Performance of PVM on a highly parallel transputer

system� First European PVM Users� Group Meeting� Rome� Italy� Oct� 	����

��
� T� R omke� M� R ottger� U� Schroeder and J� Simon� An E�cient Mapping Library

for Parix� Procs� ZEUS��� Workshop on Par� Programming and Computation�

Link oping� Sweden �	�����

��	� M� R ottger� U�P� Schroeder and J� Simon� Virtual Topologies Library for PARIX�

University of Paderborn� Tech� Rep� tr�ri����	��� 	��� �available via ftp or www��

���� P�M�A� Sloot� A� Hoekstra and L�O� Hertzberger� A comparison of the IServer�

OCCAM� Parix� Express and PVM programming environments on a Parsytec

GCel� W� Gentzsch� U� Harms �eds�� HPCN���� Munich �	����� Springer Lecture

Notes ���� �������

��� L� Stockmeyer� Optimal orientations of cells in silicon �oorplan designs� Inform�

and Control �� �	���� ���	
	�

	�



���� V�S� Sunderam� G�A� Geist� J� Dongarra and R� Manchek� The PVM concur�

rent computing system� Evolution� experiences� and trends� Parallel Computing

�
� ��	����� �	�����

���� K�V� Viswanathan and A� Bagchi� Best��rst search methods for constrained two�

dimensional cutting stock problems� Operations Research �	� 	��� ��������

���� T��C� Wang and D� F� Wong� An Optimal Algorithm for Floorplan Area Optimiza�

tion� Proc� ��th ACM�IEEE Design Automation Conf� 	�
�	��� 	��
�

���� S� Wimer� I� Koren and I� Cederbaum� Optimal aspect ratios of building blocks in

VLSI� ��th ACM�IEEE Design Automation Conference� �	����� ������

	�


