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Abstract

Analogous to the shift from assembler language programming to the third-
generation languages in the early years of computer science, we are currently wit-
nessing a paradigm change towards the use of portable programming models in
parallel high-performance computing. Like before, the use of a high-level program-
ming environment must be paid for by a reduced system performance.

But how much does portability cost in practice? Is it worth paying that price?
What effect has the choice of the programming model on the algorithm architecture?

In this paper, we attempt to answer these questions by comparing two applica-
tions from the domain of combinatorial optimization that have been implemented
with the Parix and PVM programming models. Performance benchmarks have
been run on three different systems: a massively parallel transputer system with
relatively slow T805-processors, a moderately parallel Parsytec GC/PowerPlus sys-
tem with powerful 80 MFLOPS processors, and a UNIX workstation cluster con-
nected by a 10Mbps LAN. While the Parix implementations clearly turned out to be

fastest, PVM gives portability at the cost of a small, acceptable loss in performance.

1 Introduction

Contemporary parallel computing systems are strikingly diverse in their architectures
and operating systems. A variety of interconnection networks can be found in today’s
most successful commercial machines: hypercube (nCube), 2D-grid (Intel Paragon,
Parsytec GC), ring/crossbar combination (Convex SPP1000), Q-network (IBM SP2),
fat tree (CM5), hierarchical rings (KSR2), and 3D-torus (Cray T3D). All of them have
their specific advantages and it is still an open question which topologies will ‘survive’

in the future.



Unfortunately, the programming interfaces are also very dissimilar, making it difficult
to port a given code from one hardware platform to another. As it seems, portability
can only be achieved by the use of vendor independent programming environments
like PVM [4, 24], MPI [10, 5], PARMACS, P4, Zipcode, Express, and Linda. (For an
overview on programming environments see [5]).

Portability and scalability are the keywords of this paper. Ideally, a parallel imple-
mentation would meet both properties, but in practice interdependencies make this
impossible. We compared the performance of two application programs running on
Parix (PARallel extensions to UnIX) and PVM (Parallel Virtual Machine). Three dif-
ferent hardware platforms have been used in our experiments: A 512-node transputer
system, a Parsytec GC/PP with 96 PowerPC-601 processors and a UNIX workstation
cluster with 29 SUN SparcStations. Our experiments give answers to the following
questions: Is there any impact of the choice of the programming model on the archi-
tecture of the application program? How fast is PVM as compared to Parix? To what
extent are PVM programs portable and scalable?

2 Applications

As an application problem domain, we have chosen the class of discrete optimization
problems, which can be defined in terms of finding a solution path in a tree or graph from
an initial (root) state to a goal node. Many applications in planning and scheduling can
be formulated with this model: the cutting stock problem [2], the bin packing problem,
vehicle routing, VLSI floorplan optimization [1, 27], satisfiability problems, the traveling
salesman problem [6], the NV x N-puzzle [7], and partial constraint satisfaction problems
[3]. All of them are known to be NP-hard.

For our benchmarks, we have chosen two typical applications with different solution
techniques: the VLSI floorplan optimization problem, which is solved with a depth-first
branch-and-bound strategy, and the N x N—puzzle, which is solved with an iterative-
deepening search. Both are based on depth-first search (DFS), which traverses the
decision tree in a top-down manner from left to right. DFS is commonly used in
combinatorial optimization problems, because it needs only O(d - w) storage space in
trees of depth d and width w.

2.1 VLSI Floorplan Optimization

The floorplan area optimization [23, 27] is a stage in the design of VLSI chips. Here
the relative placements and areas of the building blocks of a chip are known, but their
exact dimensions can still be varied over a wide range. A floorplan is represented by two
dual polar graphs G = (V,&) and H = (W, F), and a list of potential implementations

for each block. As shown in Figure 1, the vertices in V and W represent the vertical
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Figure 1: A floorplan and the graphs G and ‘H

and horizontal line segments of the floorplan. There exists an edge e = (vy,v2) in
the graph G, if there is a block in the floorplan, whose left and right edges lie on the
corresponding vertical line segments. For a specific configuration (i.e. a floorplan with
exact block sizes), the edges are weighted with the dimensions of the blocks in this
configuration. The solution of the floorplan optimization problem is a configuration
with minimum layout area, given by the product of the longest paths in the graphs G
and H.

Our implementation builds a tree where the leaves are complete configurations and
the inner nodes at depth d represent partial floorplans consisting of blocks By ... Bjy.
The depth-first branch-and-bound (DFBB) solution algorithm employs a heuristic cost-
function to eliminate unnecessary parts of the search space that are known not to
contain an optimal solution. When a new (possibly non-optimal) solution has been
found, the search continues with the improved cost-bound, now pruning all subtrees
with cost-estimates higher than the new cost-bound. Newly established cost-bounds
are broadcasted, so that all processors share the best available bound at any stage in

the search.

2.2 N x N-Puzle

Applications with bad initial cost-bounds and many alternatives in the decision trees
are solved with heuristic search algorithms like A* [11, 13] and IDA* [7]. One such
example is the N x N-—puzzle [7, 11, 13]. Here, a given initial configuration of tiles in a
squared tray of size N x N must be re-arranged with the fewest number of moves into
a given goal configuration. No effective upper cost-bounds are known for this problem,
and hence it cannot be solved with DFBB. Even the relatively small 15-puzzle (N = 4)
has a search space of 16!/2 ~ 10'? states. While it would seem easy to obtain any
solution, finding an optimal (=shortest) solution is NP-complete [16]. In general, it
takes some hundred million node expansions to solve a random problem instance of the

15-puzzle, using the Manhattan distance (the sum of the minimum displacement of each



tile from its goal position) as a heuristic estimate function.

Iterative-deepening A* (IDA*) [7] simulates a best-first search by a series of depth-first
searches with successively increased cost-bounds. Its low space overhead of O(d) makes
it feasible in applications where A* [11] cannot be used due to memory limitations.
With a non-overestimating heuristic estimate function, IDA* is guaranteed to find an
optimal (shortest) solution [7]. In contrast to DFBB, IDA* halts after finding a first
solution, because optimality is guaranteed by the iterative approach with the minimal

cost-bound increments [7].

3 Parallel Depth-First Search

Depth-first search can be performed in parallel by partitioning the search space into
many small, disjunct parts (subtrees) that can be explored concurrently. We have
developed a scheme called search-frontier splitting [18] that can be applied to breadth-
first-, depth-first- and best-first search. It partitions the search space into ¢ subtrees
that are taken from a ‘search-frontier’ containing nodes n with the same cost value

f(n). Search-frontier splitting has two phases:

L. Initially, all processors generate (synchronously) the same ‘search-frontier’ and
store the nodes in their local memories. A ‘search frontier’ is a level in the tree
where all nodes have the same cost-value. Each node represents an indivisible piece
of work for the next phase. Hence, on a p-processor system, the search frontier

should be chosen large enough, so that it contains at least p nodes.!

2. In the asynchronous search phase, each processor selects a disjunct set of frontier
nodes and expands them in depth-first fashion. When a processor becomes idle,
it requests a work packet (=unprocessed frontier node) from another processor.
Work requests are forwarded from one processor to the next until one of them has
work to share. When there are no work packets left, the search space is exhausted
and the search is terminated. When a processor finds a solution, all others are

informed by a broadcast.

Search-frontier splitting is a general scheme. It can be employed in depth-first branch-
and-bound (DFBB) and in iterative-deepening depth-first search (IDA*). In DFBB, the
search continues until all nodes have been either explored or pruned due to inferiority.
Newly established bounds are communicated to all processors to improve the local

bounds as soon as possible.

'Tt seems natural to generate the search frontier iteratively, by incrementing the cost-value by the
minimum amount until there are at least const-p entries in the frontier nodes array. In our experiments,

we have chosen const = 5.



In the iterative-deepening variant, AIDA* [18], subsequent iterations are started on
the previously established frontier node arrays. Work packets change ownership when
they are sent to other processors, thereby improving the global load-balance over the
iterations. Lightly loaded processors, which have asked for work in the last iteration
will be better utilized in the next. As a consequence, the communication overhead

decreases during the search process [18].

4 Parallel Implementations on Parix and PVM

We implemented the search-frontier splitting scheme on Parix and PVM using the VLSI

floorplan optimization problem and the 15-puzzle as application domains.

4.1  Parix

PARIX (PARallel UnlIX extensions) [12] is the native operating system on Parsytec GC
systems. It provides UNIX functionality at the front-end with library extensions for
the needs of the parallel system. The Parix software package comprises components
for the program development environment (compilers, tools, etc.), runtime environment
(libraries), multi-user administration, and control-net software. Parix is available for a
variety of parallel Parsytec computers. At the Paderborn Center for Parallel Comput-

ing, we run Parix on

o a 1024-node transputer system GCel-1024, where the T805-nodes are intercon-

nected in a 2-dimensional mesh topology,

e a medium size PowerXplorer with PowerPC 601 application processors and T805-

transputers for the communication,

e a high-performance GC/PowerPlus, with two PowerPC-601 application processors
and four T805 communication processors interconnected in a 2-dimensional fat

mesh with 4 links in each direction.

A wvirtual topologies library [20, 21] provides an optimal mapping of the application
process structure onto the underlying hardware interconnection structure. Based on
the virtual topologies, common global communication functions like broadcast, global

sum, min, max and barrier synchronization are available for groups of processes.

Algorithm Architecture on Pariz. While in principle any of the Parix virtual topologies
could have been chosen for our implementation, it is clear that the torus- and ring-
embeddings yield lowest dilation and congestion on our 2D hardware grid.

For the work distribution, we used a packet forwarding scheme, where the work re-

quests are forwarded to neighbored processors until either some work is sent back or
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Figure 2: Process architecture on Parix

the message makes a full round through the system, thereby indicating that no work is
available. On a torus topology, requests are first forwarded along the horizontal ring.
If none of the processors has work to share, the request is then sent along the vertical
ring, see Figure 2. This yields a wide-spread work distribution, while each processor
communicates only with a subset of 2,/p — 2 processors.

The right part of Figure 2 illustrates the process architecture of our Parix implemen-
tation. Each processor executes nine concurrent threads (=light weighted processes).
All threads run in the same context, that is, they share the same global variables de-
fined by the main program. Hence, the worker and receiver threads have direct memory
access to the processor’s frontier node array for retrieving new work packets. Memory
contention is arbitrated by semaphores. The sender and receiver threads serve incoming

messages and send work requests on demand.

1.2 PVM

The Parallel Virtual Machine (PVM) is one of the most popular message passing mod-
els. PVM is public domain and can be obtained free of charge via ftp [4]. PVM makes
a heterogeneous network of parallel and serial UNIX computers to appear as a sin-
gle concurrent computational resource. Controlled interaction of a heterogeneous set
of workstations is done via TCP/IP sockets or native MPP communication protocols,
with the possibility of dynamically adding more resources to the network as they are
needed.

Applications view PVM as a general and flexible parallel computing system that
supports the message-passing paradigm. PVM is not restricted to specific architec-
tures. Application programs may have arbitrary control and dependency structures
with arbitrary — and even dynamical — relationships among the parallel processes. This

allows the most general form of MIMD (resp. SPMD-) programming. Task granular-
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Figure 3: Process architecture on PVM

ity, communication frequency and load balancing are completely at the disposal of the
programmer. There exist library calls for blocking and non-blocking send and receive
operations. Groups of processes can be defined for broadcasts, barrier synchroniza-
tion and other group functions. Release 3.3 provides features for the efficient use of

architecture-dependent and low-level communication modes on parallel systems.

Algorithm Architecture on PVM. Only few modifications were necessary to adapt our
Parix application to the PVM programming model. Both models provide similar con-
structs for the communication interfaces. Compared to Parix, PVM is lacking a com-
mon ‘execution context’ for sharing objects among tasks running on the same processor.
Therefore, we had to implement a mechanism for sharing the frontier nodes by explicit
message transfer. In PVM, all synchronization and information sharing is solely done
via messages, even when running on the same processor. While this is certainly the most
abstract (hardware independent) approach, it might cause unnecessary inefficiencies.

In our implementation (Fig. 3) the frontier nodes array is maintained by the the
communicator task. When a worker task runs out of work, it sends a message to
its communicator executing on the same node. When there are no work packets left
in the frontier nodes array, the communicator task sends — as before — a request to
it neighboring processors. However, unlike in the Parix approach, work packets are
directly returned to the requester. This does not cause any extra programming effort,
because PVM implies a clique network, directly connecting every processor to every
other.

5 Performance Comparison

We run two application programs (15-puzzle and floorplan optimization) on three ma-
chines (GCel, GC/PP, UNIX workstation cluster) and two programming models (Parix
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p || titme sp eff || time sp eff

2] 8 12 97% | 83 11 92%

Parix PVM 16 | 61 15 96% || 63 15 91%

p |[time sp eff || time sp  eff 24 | 35 23 96% | 45 20 84%
64 || 416 62 97% | 390 53 83% 32 31 30 91% || 36 25 TT%
128 || 211 124 97% | 202 102 80% 48 1 21 45 93% || 26 35 T2%
256 || 107 223 87% || 109 184 72% 64 || 16 58 90% || 21 42 66%
512 || 51 404 79% | 79 251 49% 9 || 12 78 81% || 16 55 5%

Figure 4: GCel transputer system Figure 5: GC/PowerPlus

and PVM). Not counting the workstation experiments, for which only PVM was avail-
able, we run a total of 10 benchmarks. From the bulk of statistical data, we selected

the most significant results to be presented in the following sections.

5.1  Results for the 15-Puzzle

Tables 4 and 5 show the results obtained with a subset of Korf’s standard random
problem instances of the 15-puzzle [7] on the GCel and GC/PP. For systems with p
processors, the total elapsed time, the speedup sp and the corresponding efficiencies
eff are given. All times are wall-clock times, measured in seconds. Speedups and
efficiencies are normalized to the fastest sequential Parix implementation.

With the Parix process model discussed above (Fig. 2), we achieved on both Parsytec
machines an almost perfect scalability ranging from 97% on the ‘small’ systems to 80%
efficiency on the larger networks. This is a remarkable result, considering that the
largest GCel configuration comprises as many as 512 processors, while the GC/PP has
only 96 PEs. The latter, however, is more powerful, resulting in a much faster execution
speed of only 12 seconds on the largest system. Clearly, for such short execution runs,
the presented speedups can hardly be improved.

With its 80 MFLOPS peak performance, a single GC/PowerPlus node is expected
to be approximately 20 times faster than a GCel-transputer node with its 4 MFLOPS.
In this special application, the speedup is even larger: We measured a performance
ratio of 26. On the other hand, the communication bandwidth of the GC/PP is only
4 times higher than that of the GCel. Due to the worse communication/computation
performance ratio, it is clear, that the 15-puzzle application does not scale as well on
the larger GC/PP systems.

Being implemented ‘on top of Parix’, PVM requires some additional CPU-time for
the bookkeeping, buffer-copying and function calls. For the larger GCel system, this
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Figure 6: PVM speedup on SUN SS10-cluster, Ethernet

results in
1. increased communication latency due to the larger number of hops,
2. increased message traffic due to the increased number of fine-grained work packets,
3. increased computing overhead, since the T805 processors also perform routing.

Even so, the PVM performance losses seem to be acceptable for the medium sized
systems.

PVM’s availability and portability allowed us to develop our implementations on a
workstation cluster, while the production runs were performed on all kinds of paral-
lel systems. We also benchmarked a heterogeneous PVM environment, that allows a
collection of serial and parallel computers to appear as a single virtual machine. The
task management is done by a PVM daemon running on the UNIX front-end of the
parallel system. Since all communication is first checked whether its destination lies
‘within” or ‘outside’ the MPP system, the heterogeneous PVM cannot be as efficient
as the homogeneous PVM discussed above. Performance results for the heterogeneous
PVM may be found in [19, 22].

Figure 6 illustrates the performance achieved on a cluster of SUN SparcStation-10.
While all workstations are of the same model and speed, the measurements were taken
on busy systems with different load factors and a busy Ethernet with several bridges.
This results in widely varying execution speeds. Figure 6 shows the average, the slowest
and the fastest of 10 runs on the same sample problem set. As can be seen, the
initially good speedup seems to level off when more than 20 workstations are employed.
The exact data indicates that this is due to the longer start-up times and increased

communication latencies.
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5.2 Communication Speed of Pariz and PVM

In a separate experiment, we benchmarked latency times and communication through-
put of Parix and PVM on the GCel, GC/PP and PowerXplorer. Figure 7 shows the
communication performance between neighbored processors for each of the systems.
The PVM times include complete packing and unpacking on both sides, sender and the
receiver.

The most apparent fact is, that in contrast to the other performance graphs, the
GC/PP curves are not straight. This is attributed to the fixed initial overhead required
for multiplexing the message among the four links of the communication subsystem.
The multiplexing is done by four dedicated T805 communication processors. In practice,
the computing performance would greatly benefit by latency hiding techniques, which
is not reflected in these performance graphs. Hence, these graphs represent the worst
case.

For the systems with PowerPC 601 processors (GC/PP and PowerXplorer), the com-
munication throughput of PVM and Parix are very similar. Only for the GCel, there is
a larger discrepancy between Parix and PVM communication performance, illustrated
by the dotted line. This is caused by the GCel transputer nodes, which are by a factor
of 20 slower than the PowerPC nodes. Hence, it takes much longer on the GCel to
initiate a communication (function calls, data copying, etc.). Once the initial setup

is done, the same throughput is achieved on the GCel as on a PowerXplorer. Due
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to the fat communication mesh, consisting of 4 links in each direction, the GC/PP

communication is faster.

5.3  Results on the VLSI Floorplan Optimization Problem

Figure 8 shows the results obtained with the VLSI floorplan optimization algorithm.
We used a standard VLSI benchmark problem from [26] with 25 building blocks and
six different implementations per block. This gives a search space of 6*° ~ 10" nodes.

Compared to the 15-puzzle application, more communication is necessary in the floor-
plan optimization, because the solution speed depends much on the availability of effi-
cient bound values. Each time a new bound is found by any of the worker tasks, it is
broadcasted to all others.

The Parix implementation uses a torus topology for submitting work requests and
for transferring work packets. Our PVM implementation, in contrast, makes use of the
implicit clique topology. A master process hands out work packets to the slaves which
search their assigned subtrees and broadcast newly found bound values.

As can be seen in Figure 8, this simple farming approach yields sufficient performance
results on small systems with < 24 processors. Beyond, a hierarchy of master processes

should be implemented to eliminate potential communication bottlenecks.

6 Conclusions

We evaluated two programming models, PVM and Parix, on three hardware platforms
with two different application programs. What are the lessons learned? Recalling the

title of our paper ‘Portability versus Efficiency?’, we draw the following conclusions:

Portability. PVM provides a portable programming model for implementing parallel
applications on a wide variety of message-based MIMD systems. Many important scien-

tific and industrial applications have been ported to PVM with the expectation to gain

11



more independence from specific hardware platforms and vendors. First results from
the Esprit project EUROPORT indicate, that it is possible to execute large PVM appli-
cations on various systems, ranging from moderately parallel symmetric multiprocessor
systems to massively parallel systems with many hundred nodes.

Hardware independency, however, may tempt the programmer to use program fea-
tures that might later be found inefficient on certain systems. Time-critical applications
may need post-optimization to exploit specific MPP system features. As an example,
PVM’s clique-structured communication pattern is tailored for bus-connected work-
station clusters (Ethernet, FDDI, ATM). As seen above, clique communication poses
problems on massively parallel 2D systems, where the communication latency depends
on the number of hops a message needs to reach the recipient. Here, nearest neighbor

communication should be used instead.

Efficiency. Fxecuting on top of the native operating system, the PVM programmming
interface clearly induces additional overheads. The slower the application processor, the
more time is spent in setting up the communication between processors. Compared to
Parix, PVM needs more bookkeeping for the management of communication buffers,
for any necessary data conversions and for additional system calls.

The performance losses are especially pronounced in the results obtained on the large
transputer system (Table 4). Here, the PVM implementation took 79 seconds on a 512
node-system, while the Parix implementation computed the same solution in only 51
seconds.

Due to unpredictable execution times, time-critical interactive applications should
better not be run on workstation clusters. Different processor capabilities may induce
load imbalances and the system load might change dynamically during the program
runtime. While the different processor speeds did not affect the performance of our
PVM implementations (which includes a dynamical load balancing strategy), we still

observed widely varying execution times from one execution run to the next.

Process Architecture. The choice the ‘best’” process architecture for a given application
may be influenced by the hardware architecture and the programming model.
Compared to the Parix implementation, PVM needs more effort to implement a mech-
anism for sharing work-packets among the ‘communicator-" and ‘worker tasks’ executing
on the same node. In Parix, all threads run in the same context and share the same
global variables defined by the main program. Hence, all threads have direct memory
access to the same ‘work packet array’ maintained on a node. Memory contention is
arbitrated by semaphores. In PVM, in contrast, all communication is performed via
explicit message transfer — regardless whether it is a long distance communication or a

communication within tasks running on the same processor.
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Typically, the PVM process architecture is designed without knowing the topology
of the target hardware system. Since PVM does not provide information about the
location of the tasks in the (hardware-) network, fast communication (e.g., nearest
neighbor communication) is hard to implement. The virtual topologies provided by
PARMACS and MPI allow more efficient mappings of tasks to processors. While such
mapping functions can also be implemented by matching the Parix process descriptors
to the PVM task identifiers, such programming tricks clearly violate our ultimate goal

of portability.
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