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A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

Abstract

This thesis deals with an approach, based on human perception to solve the vertex
correspondence problem in two dimensional polygon morphing. Correspondences are es-
tablished between points of high curvature and their local neighborhood in both source
and target shape. To compare local neighborhoods, several criteria are introduced which
compose a cost function, assigning costs depending on the similarity of local neighbor-
hoods in source and target. The optimal correspondence will be assumed as the corre-
spondence with the least costs overall. Later on implementation details of these ideas
will be shown in the Java programming language with the help of exemplary source
code.

The ideas of a perceptually based solution for the vertex correspondence problem
presented here are elaborations of an algorithm proposed by Liu et al. presented during
PG’04 (11).
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1 Introduction

1.1 Motivation

Nowadays morphing techniques are widely used in animations, computer graphics, mod-
eling, movie making and apparently also in industrial design (4). Though over the years
progress towards automation has been made still a lot of user interaction is required to
successfully generate a satisfactory morphing sequence. Especially determining corre-
spondences between source and target image can be a time-consuming process, if both
images are complex. The discussed approach focuses on morphing sequences with poly-
gons and tries to reduce the amount of work for a user, by heuristically choosing suitable
correspondences for each vertex in a polygon.

1.2 Structure of this thesis

The title of this thesis reads “A Solution to the Vertex Correspondence Problem in 2D
Polygon Morphing”. This introduction shall provide a short outlook what is meant with
this title and what the reader might expect in the following sections.

The term morphing in computer graphics accumulates various techniques to transform
one image into another image through a seamless transition. This is done by calculating
in-between images, so that displaying these images in an orderly fashion creates a smooth
animation from the original image (in the following called source or S) to the second
image (target or T ). How the in-betweens are created is dependent on the kind of images
used and of course on the algorithm employed on the images. The discussed approach
can be roughly divided in 5 steps:

1. Source S and target T have to be specified as two 2D polygons

2. Both S and T will undergo a preprocessing step called feature point detection to
concentrate in the morphing process on the important parts of a shape

3. The Vertex Correspondence Problem has to be solved

4. The Vertex Path Problem has to be solved

5. The morph sequence generated by the previous steps has to be displayed

The first step will be elaborated in section 2, which deals mainly with definitions of
different two dimensional shapes. Section 3 defines the term feature point and describes
an algorithm suitable for the preprocessing of S and T . Section 4 will explain in more
detail about morphing of two dimensional shapes and the main problems which need
to be solved. First, in 4.1 an introduction to the Vertex Correspondence Problem will
be given and secondly, in 4.2 the Vertex Path Problem will be briefly sketched which is
a quite complex problem of its own. A solution with the focus on human perception
of the Vertex Correspondence Problem will be presented in theoretical detail in 5. The
implementation of this ideas in the Java programming language will be discussed in
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section 6, where exemplary code will be provided as well as an overview using UML class
diagrams. Subsequently an introduction in the resulting application will be provided in
section 7, demonstrating the user interface and its usage. In section 8 some results
created by the application are shown as well as the influence of several algorithmic
parameters on a morphing sequence. Finally section 9 will contain an outlook concerning
algorithm and application and section 10 will present a final discussion of the the previous
sections.

The author wants to encourage readers who are already familiar with certain topics of
different sections to skip these sections. If terms used in a section may require previously
mentioned knowledge there will be generally a reference provided, so that the reader is
able to consult the referenced section in case she needs additional information.
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2 Shapes

Although the title of the thesis already restricts the problem to a special case of two di-
mensional shapes, namely polygons, the algorithmic principles and structures, discussed
in section 3 and 5 can also be applied in the more general scenario of two dimensional
shapes. Therefore this section will give a short introduction what in the following will
be meant with the term shape and what polygons are in general and in the context of
this thesis.

2.1 Two dimensional shapes

A two dimensional shape in the context of this thesis is defined as a curve in a two
dimensional plane. The curve should be free of self-intersections and is either non-closed
or closed. A shape is called closed if it has no visible start and end, otherwise it is
non-closed (see Fig. 1). If the curve defining a shape does not cross itself the shape is
intersection-free, else it will be referred to as self-intersecting. In general a closed shape
can be filled, which means that the points inside the curve have a different color than
the background, or a shape can be unfilled. For the process of morphing shapes without
any self-intersections it is irrelevant if a shape is filled or not, so in the following shapes
are assumed to be not filled. A two dimensional point belonging to a shape may have
arbitrary color, as long as the curve is distinguishable from the background. Since the
color information of points belonging to a shape will be unaccounted for the morphing
process, it will be assumed that all points belonging to a shape have the same color.

Figure 1: Examples for two dimensional shapes:
a) shows a non-closed intersection-free shape,
b) shows a closed intersection-free filled shape and
c) shows a closed self-intersecting shape
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The general definition of a shape does not restrict the way how the shape is represented
in forms of data structure in any way. It would be possible to represent a shape just as the
set of points which belong to the shape. However such a representation is neither efficient
in terms of storage nor suitable to handle for two dimensional graphical transformations
like translation, rotation or scaling. Generally it can be assumed that a shape will be
represented by an ordered finite collection of points Pi where the points Pi−1 and Pi+1

are referred to as predecessor and successor of Pi respectively. If the shape is closed
and the collection contains m different points P0 = Pm holds. In the case of not closed
shapes P0 is called the start point of the shape and Pm−1 is the end point. Between
a point Pi and its successor Pi+1 the form of the shape will be generally defined by a
function, like a Bezier curve or a cubic spline for example.

2.2 Two dimensional polygons

A polygon is a special case of a shape as described in 2.1. In a polygon the functions
describing the shape between two points are restricted to straight lines. The collection
of points of a polygon is referred to as vertices, with a single Point Pi being called vertex.
The line segments connecting two vertices are called either edges or sides.

Figure 2: Examples for two dimensional polygons:
a) shows a simple convex polygon,
b) shows a simple concave decagon and
c) shows a complex pentagon

In some definitions a polygon is always closed and a non-closed “polygon” should be
referred to as a polygonal path or sometimes a polygonal-line. A polygon with m vertices
is also called m-gon where for m ≤ 20 oftentimes latin names are used (like heptagon
for example). If a polygon is free of self-intersections it is simple, otherwise it is called
complex (see Fig. 2). The interior of a simple polygon, bounded by its edges and vertices,

Sven Albrecht 9



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

is known as the polygonal region, which is in some cases also identified with the term
polygon. In the context of this thesis polygon applies solely to the vertices and the edges.
A simple polygon whose interior is a convex set is called a convex polygon. Otherwise it
is a concave polygon. The following two criteria are equivalent to convexity of a polygon:

• Every internal angle at a vertex is at most 180◦.

• Every line segment (not only the edges) between two arbitrary vertices remains
inside or on the boundary of the polygon.

In a concave polygon at least the internal angle at one vertex is greater than 180◦. Such
a vertex will be called a concave vertex, all other vertices are convex vertices. With the
definition of a feature point (see 3.1) the distinction between convex feature points and
concave feature points will be analogous.

Polygons are generally easier to handle in terms of graphical transformations than
other shapes: In most cases it is sufficient to apply the transformation on every single
vertex and then draw the edges between the modified vertices, while in the case of
shapes possibly other parameters would have to be modified as well, depending on the
underlying data structure representing the shape. The simplicity of a polygon compared
to a shape has another advantage: The computations needed to display a polygon can
be done very efficiently by employing the line algorithm of J. Bresenham based on (3).

Sven Albrecht 10
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3 Feature Points

3.1 Feature Point Definition

The term feature point describes, in the context of this thesis, a single point in a two
dimensional plane. Besides values for x and y coordinates other properties will be
associated with a feature point during the matching process, but those properties and
their applications will be discussed later (5.3) in detail.

Every feature point belongs exactly to one shape and the shape in turn can be repre-
sented, with a certain loss of information, by all feature points appendant to it. Unlike
points in a uniform sample of a shape, feature points are in general not uniformly dis-
tributed over a shape. Feature points are high curvature points in a shape, so they mark
prominent areas. In shape perception of human observers such points play a dominant
role (1). In most cases a shape can be represented better by a small number of feature
points, positioned at high curvatures, than a equal number of sample points distributed
uniformly over the shape. For this reason the approach described in section 5 utilizes
feature points to describe a shape and its properties instead of mere samples. This en-
sures that areas which are closely observed by humans are represented with satisfactory
detail, while areas without any striking curvatures will be represented by few points.

3.2 Detection of feature Points in planar curves

The problem of detecting points of high curvature in two dimensional shapes has been re-
searched since the early 1970’s. A recent and fast algorithm was developed by Chetverikov
and Szabó (5) in 1999. In their research they compare their approach with other ap-
proaches by Rosenfeld and and Johnston (13), Rosenfeld and Weszka (14), Freeman and
Davis (7) and Beus and Tio (2). The methods described in the following are based on
the descriptions in (5). Information on the approaches (2; 7; 13; 14) can be either found
in the according publications or in a short overview in (5).

Chetverikov and Szabó propose in their approach a two-pass algorithm. In a first
pass potential candidates are detected and in a second pass the possible candidates are
filtered to avoid multiple registration of what should actually be viewed as one high
curvature point.

3.2.1 Detecting possible candidates for feature points

In the first step of the two pass algorithm the shape will be represented by an ordered
sample of points Pi. The Euclidean distance between a sample point Pi and its adjacent
point Pi+1 should be small, but not necessarily equal for every pair of adjacent points.
Such a sequence will be scanned for potential feature points. A potential point of high
curvature is detected, if a triangle with specified size and specified opening angle at the
point can fit inside the shape.
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This is done by a set of three rules:

dmin ≤ ‖Pi − P+
i ‖ ≤ dmax

dmin ≤ ‖Pi − P−
i ‖ ≤ dmax (1)

α ≤ αmax,

where Pi is the candidate to be checked, P+
i is a point succeeding Pi in the order of

the sequence of the point sample, P−
i a point preceding Pi and α ∈ [−π, π] describes

the opening angle of the triangle at Pi. ‖Pi − P+
i ‖ measures the Euclidean distance

between Pi and P+
i ; ‖Pi − P−

i ‖ is defined analogous. Please observe Fig. 3a) for some
visualization.

Figure 3: Detecting high curvature points
a) Determining if Pi is a candidate for a feature point. Sample points are
colored red, Pi, P+

i and P−
i are colored blue.

b) depicts the same scenario as a), but at a subsequent time with different
choices for P+

i and P−
i . For comparison the old choices are visualized less

colorful.

In Fig. 3 ‖Pi − P−
i ‖ is labeled b and ‖Pi − P+

i ‖ is labeled a. The opening angle α is
computed as

α = arccos
a2 + b2 − c2

2ab

During the computation P−
i and P+

i are moved outward (see Fig. 3b))from Pi until
‖Pi − P−

i ‖ ≤ dmax and ‖Pi − P+
i ‖ ≤ dmax respectively do not hold. Of all triangles

which fulfill all conditions in (1) the least opening angle α(Pi) is selected and π−|α(Pi)|
stored as the sharpness of Pi. If for all permitted points for P−

i and P+
i no triangle

satisfies the conditions in (1) Pi is no candidate for a feature point.
The triangles can also be used to determine if a feature point is considered concave or

convex: For vectors ~b = (Pi − P−
i ) = (bx, by, 0)T ∈ R3 and ~c = (P+

i − P−
i ) = (cx, cy, 0) ∈
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R3 the vector product ~b × ~c = ‖~b‖‖~c‖~n sin θ with ~n being a unit vector perpendicular

to both ~b and ~c is simplified to bxcy − bycx = ‖~b‖ |~c‖~n sin θ. That means a point where
bxcy − bycx ≥ 0 will be considered convex, since that implies sin θ ≥ 0. Otherwise the
curvature at the feature point will be considered concave. Every point contained in the
point sample of the shape has to go through this process.

3.2.2 Filtering of possible candidates

In the second pass multiple detected feature points for the same corner are filtered. If
in the first pass a dense sample of the curve was used to detect potential feature points,
it is highly likely that more than one potential candidate was chosen to represent a high
curvature (Fig. 4). On the other hand if the curve was not densely sampled the danger
to ignore otherwise valid feature points increases. For a visual example please observe
Fig. 5.

Figure 4: Choosing between feature point candidates
Sampling points are depicted in gray. Points Pi and Pj have been detected as
candidates for feature points. The sharpness of both candidates will be tested
to determine which candidate will be chosen to represent the feature. In the
depicted scenario the blue colored Pi will be preferred to the red colored Pj,
because of its greater sharpness.

If one corner is represented by multiple feature point candidates, it can be assumed
that all those candidates are consecutive sample points. It seems suitable to choose the
point from all candidates which has the strongest response to the corner. The sharpness
π − |α(Pi)| can be utilized to determine which point Pi should be associated with the
corner. A candidate Pi will be discarded if another candidate Pj exists in its neighbor-
hood and the sharpness assigned to Pj is greater than the sharpness assigned to Pi. Put
into a formula this means α(Pi) > α(Pj) holds. A visualization is depicted in Fig. 4.
The term “neighborhood” of a point Pi leaves a certain play in the implementation. For
example the neighborhood for a point Pi could consist of Pj ∈ {Pj | ‖Pi − Pj‖ ≤ dmax}.
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Figure 5: Suboptimal feature detection due to lose sampling
Sampling points are depicted a black points, the detected feature point is col-
ored red. Instead of the red point a more dense sampling would have produced
a preferable feature point in the gray area.

However choosing all points Pj ∈ {Pj | ‖Pi − Pj‖ ≤ dmin} or all consecutive points
Pj, i < j and Pk, k < i which are valid candidates are equally meaningful definitions for
a neighborhood.

Parameters and their meaning Though first and second pass of the algorithm are
described in sections 3.2.1 and 3.2.2 there might still be some questions concerning the
meaning and influence of the parameters dmin, dmax and αmax. The maximal angle αmax

sets the upper limit for the opening angle at a potential feature point. For example if
αmax is set to 130◦ the triangle fitting into a corner of the shape must have an opening
angle of less than or equal to 130◦ in order to be a valid candidate. If a shape contains
many areas of high curvature and it should be represented by a small number of feature
points it is appropriate to set αmax to a relative small value. For shapes which do not
feature many points of high curvature a larger value for αmax is advised, so that at least
some feature points can be detected. The lower limit dmin restricts the detection of
feature points to areas of a certain size. This way small sized areas of high curvature,
that would not be noticed by an observer, will be ignored and the detection becomes
more robust against the appearance of noise in the shape. The upper limit dmax is used to
prevent detection of false feature points. Without this upper limit triangles with small
opening angles could be constructed, which are not located inside the corresponding
corner anymore. For example every sample point Pi in a closed shape would be detected
as a feature point by using points on the opposite side of the shape as P−

i and P+
i (see

Fig. 6).
While the optimal choice of dmin, dmax and αmax of course depends on the kind of

shape on which the algorithm should be applied, it turns out that the algorithm is
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Figure 6: Wrongly detected feature point
due to missing restriction of dmax. Without a boundary for dmax every sampling
point can become a feature point in a closed shape. Sampling points are colored
red, the falsely detected feature point candidate Pi, P+

i and Pi1− are colored
blue.

quite robust in relation to the parameters. In the experiments conducted in (5) the
algorithm was tested on various shapes without any fine-tuning of the used parameters
and delivered satisfying results. The default values used in (5) were dmin = 7, dmax = 9
and αmax = 150◦.

In the case of purely polygonal shapes the detection of feature points is of reduced
difficulty. The only possible candidates for feature points can be found at the junction
of two edges. Without any further algorithm one could simply assume that every vertex
of a polygon should be a feature point. A more sophisticated approach would be to use
two similar criteria to determine if a vertex is a feature point. Firstly only vertices with
an opening angle smaller than αmax should be considered as a feature point. This way
the detection of feature points at almost straight segments of a polygon, containing more
than two vertices, can be avoided. Secondly a parameter similar to dmin should be used.
Instead of comparing the combined length of both edges connecting a vertex with its
adjacent vertices to an absolute value, another solution seems to be more feasible: Only
vertices where the combined length of both edges in respect to the total length of all
edges is larger than a threshold should be considered feature points. This ensures that
the parameter is independent from the size of the total polygon and will be unaffected
by operations like scaling of the polygon.

Additional remark Though the algorithm proposed in (5) is robust it has its limita-
tions. For example one should keep in mind that it can only detect feature points in
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a shape if they exist. This remark might sound strange, but for example in a circle
no feature points will be detected. The same would apply for a n-gon (polygon with n
vertices) where for every internal angle α(Pi) the equation α(Pi) > αmax holds. However
this should not be treated as a flaw of the algorithm, but as a special feature of these
shapes: A single-colored circle just has no point on which an observer would especially
focus on and the same applies for shapes with extremely large internal angles.
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4 Morphing of two dimensional shapes

As already mentioned in the introduction 1 morphing of two dimensional shapes can be
divided into two subproblems which have to be solved. These problems are called the
Vertex Correspondence Problem (VCP) and the Vertex Path Problem (VPP). Common
literature concerned with shape or polygon morphing addresses mostly the VPP, while
suggested solutions to the VCP tend to be a bit more sparse. However both problems
are equally important and in the chronology of a morphing sequence the VCP is a
requirement before the VPP can be solved. In the case of morphing of two dimensional
shapes special attention is turned to the goal of creating morphs where all in-between
shapes are free of self-intersections, because apart from some fanciful special cases a
morphing sequence that contains self-intersections will be perceived as an “unnatural”
transition from source to target. To sum up both problems in one short phrase, one
might say that the VCP has to solve which point from S shall travel to which point of T
and the VPP is concerned with the paths on which every point has to travel during the
morphing process. In section 4.1 the VCP will be described in more detail, but without
any suggested solution. Such a solution will be discussed in 5. The VPP will be briefly
presented in section 4.2.

4.1 The Vertex Correspondence Problem

Before any animation can take place in the morphing of two dimensional shapes a corre-
spondence between source and target has to be established. This correspondence assigns
to every point Si = (xPi

, yPi
) contained in S a corresponding point Tj = (xTj

, yTj
) in T .

Since a shape can easily contain thousands of points the magnitude of this problem has
to be downsized, before it becomes computational processable. Therefore algorithms of-
ten focus not on every point contained in a shape, but the points defining the appearance
of a shape, namely feature points (see section 3) or in the case of polygons oftentimes
just all vertices. Points belonging to edges between two vertices Pi and Pj will be as-
signed to points between the two corresponding points TC(i) and TC(j), where C(i) is a
function acquiring a correspondence for a point. So basically if the VCP is solved, for
every point contained in a shape the starting position in the first frame of the animation
Pi = (xPi

, yPi
) is known and the end position in the last frame TC(i) = (xTC(i)

, yTC(i)
).

Once such a correspondence is established the Vertex Path Problem (see section 4.2)
arises, which deals with the traveling path for every point during the morph.

However one might wonder why the VCP is a noteworthy problem. If a human being
is confronted with source and target in form of two polygons she often has a clear notion
which vertices should correspond to each other. In many cases these correspondences
are established intuitively in a split second, so for a human being the VCP seems to be
quite trivial. Unfortunately computers do not perceive the world in the way a human
being does (otherwise a lot of challenging problems like symbol grounding in AI and
knowledge based robotics would have been solved probably years ago). In the following
the VCP will be discussed for the case of two dimensional polygons, but the statements
can be transfered to the case two dimensional shapes without much modification.

Sven Albrecht 17



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

A valid solution to the VCP can be interpreted as a bijective mapping function from
the vertices contained in S to the vertices in T , in a way that for every vertex in S there
is exactly one vertex in T which it corresponds to and vice versa. Obviously such a
mapping is not always possible, without further modifications of the polygons involved,
if for example S and T do not contain the same number of vertices. On the other hand
only a small number of these mappings would qualify as a suitable solution to the VCP:
A morphing sequence that satisfies an observer should be free of self-intersecting motions
during the morphing sequence. Thus in many cases, though it might sound implausible
at first, even if S and T have the same number of vertices a solution is not trivial.
Assuming there was an algorithm that could efficiently compute the correspondence with
the least traveling distance for all vertices, and additionally assuming linear animation
paths, there are many simple cases where such a solution would lead to self-intersections.
A simple example is depicted in Fig. 7 and the reader will surely be able to come up
with more simple examples.

These demands increase the complexity of the VCP. To give the reader an idea of the
complexity the author will try to depict it step by step:

If source S has m vertices and target T has n vertices there are in theory n · m
correspondences, since one point in S could choose between n correspondences in T .
However in this consideration every vertex is treated independently of all other vertices,
contained in the same polygon. Since a bijective mapping is required it has to be ensured
that a vertex in T corresponding with one vertex in S can not be chosen by another vertex
in S as its correspondence. That means already established correspondences have to be
kept track of. In addition a policy is needed to decide if two vertices Si1 and Si2 of S are
candidates for a correspondence with Tj of T which vertex will be preferred. An example
for a very simple policy would be a “first come, first served” policy, but such a policy
will certainly not deliver suitable results in the general case. Even if some sophisticated
policy is employed and the result is a bijective mapping, the vertices are still treated
independently from each other, just double correspondences have been prevented. A
desired mapping is not only bijective, but has to fulfill certain ordering constraints. For
example, if it is assumed that S and T have the same number n of vertices. If it is
further assumed that all vertices with an index smaller than some special index k − 1
correspond to each other and the same applies for all vertices greater than index k + 1:
Si ↔ Ti ∀(i < k − 1) ∨ (i > k + 1), where Si ↔ Tj indicates a correspondence between
Si and Tj. If in addition now Sk−1 ↔ Tk+1, Sk ↔ Tk and Sk+1 ↔ Tk−1 hold, the result
may be a bijective mapping, but is not a solution for the VCP. The mapping is invalid,
because it will be impossible to find animation paths (see 4.2) that will not self-intersect,
as demanded in the beginning of section 4. To visualize the above described exemplary
scenario please observe the scene depicted in Fig. 8.

Algorithms trying to solve the VCP either have to recognize such invalid mappings
and refuse them or have to be designed in a way that they will only construct valid
mappings. If an algorithm is able to find more than one valid mapping, again a policy
is needed to choose which mapping should be preferred.

In the common case that S and T do not contain the same number of vertices ad-
ditional criteria need to be introduced. These criteria could indicate for example if it
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Figure 7: Intersections caused by minimal vertex movement
a) Source is depicted on top and target at the bottom. Between source and
target several in-between polygons are depicted, linked by dashed arrows. Ver-
tices are marked by black points and the numbers indicate the movement of
the vertex during the morphing sequence.In this correspondence and the ani-
mation paths for each vertex self-intersections are prevented.
b) Labeling as described in a). This morphing sequence is the result if only
the least total movement of all vertices is taken as a criteria to choose corre-
spondences.
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Figure 8: Intersecting correspondences
Polygon S depicted on the left, (identical) polygon T depicted on the right.
Vertices are indicated with points, correspondences between vertices are de-
picted with dashed lines. Red lines and points indicate unavoidable self-
intersections during the morphing, if the blue ones are set.

would be beneficial to completely ignore vertices or to add additional vertices into one
of the polygons, so that in the end a bijective mapping is achieved.

All these requirements prevent the VCP to be solvable in polynomial runtime. Effi-
cient implementations will, like in the domain of path finding, try to use heuristics to
find solutions, instead of calculating the actual optimum. Of course the quality of the
solutions depends strongly on the policies used to choose which correspondences and
mappings are to be preferred. Such policies can try to approximate human perception,
but considering the current state of the art will not always emulate successfully. This
fact and the use of heuristics prevent that even sophisticated approaches will always
deliver the result expected by a human observer. However this might be entirely impos-
sible since not all humans would perceive a scene in the same way and might intuitively
choose different correspondences.

A common technique to simplify the VCP is to let a human operator choose a few
initial correspondences of the most important features and then try to find suitable
correspondences for the remaining vertices between the manually established correspon-
dences.

The goal of (11) and their approach described in section 5 is to get a robust heuristic,
that will deliver satisfactory results in many scenarios without human interaction.

4.2 The Vertex Path Problem

If a complete correspondence between source and target is established either by a human
operator or by an algorithmic solution of the VCP, the Vertex Path Problem has to
be solved. If for a Point Pisource = (xisource , yisource) of source its destination Pitarget =
(xitarget , yitarget) is set, the question arises, how that point should travel from Pisource to
Pitarget . Again this question may seem trivial, since one could simply use the straight
line connection Pisource and Pitarget . Indeed this is already a simple and valid solution
in some cases. However, if every point travels on a line, the points will travel in a
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common scenario with different speed, since the Euclidean distance between every pair
of corresponding vertices will not be the same. This can lead to self-intersections in the
morphing sequence, which are to be prevented if possible. There are also a lot of other
scenarios in which self-intersections would occur if every vertex would simply travel on
a straight line (see Fig. 9). The same exemplary scenario could be solved, if all vertices
travel on other curves, for example Bezier curves, without self-intersections as is depicted
in Fig. 10.

Figure 9: Self-intersections caused by linear animation paths
Correspondences between vertices are indicated by the same color, the ani-
mation paths are depicted as dashed colored lines between the corresponding
vertices

To avoid self-intersections many different approaches have been introduced since the
late 1980’s. In 1992 Sederberg and Greenwood (16) introduced an approach they called
“physically based” which tries to avoid self-intersections and handles both the VCP and
the VPP. Based on the solution of the VCP presented in (16) Sederberg et al. suggested
another approach to the VPP in (15). In 1995 Shapira and Rappoport (17) introduced
another method using so called “star-skeletons” to avoid global self-intersections, given
a complete correspondence. Though these approaches might not be the state of the art
any more, they provide good introduction into the problem and additional background
information. A more recent approach, also requiring a solution to the VCP, is suggested
by Gotsman and Surazhsky in (8), which guarantees that polygons in the in-between
sequence are also simple, if source and target are simple.
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Figure 10: Avoided self-intersection in animation
Same scenario as in Fig. 9, but this time using (handmade) Bezier curves as
animation paths avoids self-intersections, again correspondences and associ-
ated animation paths are distinguished by color
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5 A human perception based approach

5.1 Overview

The following ideas and algorithms were developed and published by Ligang Liu, Guopu
Wang, Bo Zhang, Baining Guo, and Heung-Yeung Shum in 2004 (11). In their approach
the process of developing correspondences between vertices of source and target is focused
mainly on the way humans perceive a polygon and how they notice changes in shapes.
Though (11) is an excellent source to gain insight into their ideas some parts of their
algorithms are sketched rather briefly. Their algorithms were implemented in C], but
source code is not freely available, to the best of the author’s knowledge.

This section will deal with the theoretical part of the algorithm while section 6 will
provide details on the implementation of the approach presented here.

5.2 Algorithmic overview

Liu et al.(11) focus on a perceptually based approach in their ideas. This means that
the algorithm will try to find common characteristics between source and target, which
stand out to a human observer. Basically this means that vertices at pointed corners are
observed more consciously than relatively flat corners. Also the size of a part of a shape
plays an important role: If the distances from a vertex to its predecessor and successor
in a polygon are relatively small in relation to the total length of the polygon, its absence
may go almost unnoted for a human observer. However if the distance to predecessor
and successor contribute greatly to the total length of the polygon the absence of such a
vertex would be noticed immediately. In the general case of two dimensional shapes the
appearance of the shape between two vertices should also be taken into consideration,
when trying to create a correspondence. To visualize these ideas please note the following
example: Consider a morphing sequence between the polygon in Fig.11a the polygon
depicted in Fig. 11b. As you may recognize both polygons can be interpreted as humans,
each wearing a hat and waving their right arm. For a human observer it will probably
feel “natural” if during a morphing the heads of Fig. 11a and Fig. 11b will correspond
to each other as well as the legs and arms of Fig. 11a and Fig. 11b from left to right
should correspond to each other.

5.3 Similarity and Discard Costs

As mentioned in 4.1 criteria are needed in order to decide which correspondences between
vertices can be considered suitable. Taking into account the desire for morphings which
should fulfill the demands expressed in 5.2 the criteria must be able to distinguish
between similar parts of two different shapes and parts that are unlike in appearance.

For this purpose a cost function seems to be reasonable, which assigns high costs to
correspondences of local areas of shapes which are different in appearance and assigns
low costs to areas which are likely to resemble each other. As you may notice the focus
here is on “areas” and not on single feature points, implying that the local neighborhood
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Figure 11: Exemplary source and target for a morph
a) depicts the source and b) the target shape. During a morphing sequence
it would be desirable if noticeable parts of the shapes like heads, arms and
legs correspond.

of a feature point will be taken into account as well. This will be done by the Region of
Support.

5.3.1 Region of Support

In the following sections the term Region of Support will be abbreviated using simply
ROS. The ROS is defined as the local neighborhood of a feature point Pi as follows:

ROSh(Pi) = {Pj|j = i− h, i− h + 1, . . . , i + h} (2)

Where h is an integer which can be varied by the user. The influence of the parameter
h will be explained later in this section.

Several studies on the extraction of features from point clouds (9; 12) show the use
of the covariance of a local neighborhood of a point to estimate local surface properties
of a shape. These methods can be utilized for feature points Pi and their appendant
ROSh(Pi). To calculate the covariance for a point Pi = (xi, yi), first the center of
ROSh(Pi) is calculated, which will be denoted as P̄i.

P̄i =
1

2h + 1

i+h∑

j=i−h

Pj (3)

With the help of P̄i the covariance matrix of ROSh(Pi) is defined as

C(Pi) =
1

2h + 1

i+h∑

j=i−h

(Pj − P̄i)
T (Pj − P̄i) (4)
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The resulting 2× 2 matrix together with its eigenvectors {e0, e1} and the corresponding
eigenvalues {λ0, λ1} define the correlation ellipse which resembles the general form of
ROSh(Pi), (see Fig. 12). As you can see one of the eigenvectors points closely into
the tangent direction of the local region, while the other eigenvector points into the
direction of the normal. Thus one eigenvector can be called the tangent eigenvector eT

with its corresponding eigenvalue λT and the other one will be referred to as the normal
eigenvector eN with the normal eigenvalue λN .

Figure 12: Eigenvectors, eigenvalues at different shapes
Points belonging to the region of support are colored red, the point Pi is
colored blue and the center of ROS P̄i is colored gray.
a) λT > λN > 0 b) λT > λN = 0 c) λN > λT > 0

To determine which eigenvector points into the direction of the normal, the bisector
of the angle created by a feature point Pi and its nearest neighbors in ROSh(Pi) (the
Points Pi−1 andPi+1) is calculated. Since the tangent meets the bisector at a right angle,
the dot product of both eigenvectors and bisector is calculated. From linear Algebra it
is known for two vectors u and v

〈u, v〉 = ‖u‖‖v‖ cos θ ⇔ cos θ =
〈u, v〉
‖u‖‖v‖ , u, v 6= 0

Thus the eigenvector with the larger result in the dot product with the bisector can be
considered the normal eigenvector eN while the eigenvector with the smaller result can
be assumed to be the tangent eigenvector eT .

Increasing the number of points in the local neighborhood (by increasing the parameter
h) has a similar effect as employing a low-pass filter: The covariance (equation (4)) is
defined as the sum of squared distances from the center P̄i divided by the number of
points contained in ROSh(Pi). Thus if the number of points contained in the local
neighborhood increases the influence of a single point on the the resulting covariance
matrix decreases. Eigenvalues and eigenvectors are directly dependent on the covariance
matrix and thereby the ellipse resembling the shape of the local neighborhood. If it is
desired to inhibit the effect of small outliers or noise in certain areas of a shape on the
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matching process generally a higher value for h is recommended. On the other hand one
should try to avoid increasing the size of the local neighborhood to a size where many
points belonging to regions beyond adjacent feature points are included, because this
would reduce the significance of the appendant feature point and thus the covariance
would not necessarily yield valid information on the geometrical properties of the local
neighborhood of the feature point.

A compromise to accomplish both, low-pass filtering and preserving including only
the local neighborhood of a feature point is a to create ROSh(Pi) by a semi uniform
sampling. That means, the parameter h for the size of ROSh(Pi) is set to a fixed value
and for each feature point Pi its predecessor Si−1 and successor Si+1 are determined.
Please note that points Si−1 and Si+1 are labeled with “S” instead of “P” to indicated
that they are feature points and not just mere vertices. Now the distance between Si−1

and Pi along the edges connecting both feature points has to be calculated. The distance
information is now used to create a sample of h points distributed uniformly along the
edges from Si−1 to Pi The first point included into this sample should be Si−1. As
center of ROSh(Pi) of course Pi itself is added and the missing h points in ROSh(Pi)
are calculated between Pi and Si+1 using the same method as between Si−1 and Pi. The
last point added into ROSh(Pi) should therefore be Si+1. A visual example is given in
Fig. 13 a). All points in ROSh(Pi) between Si−1 and Pi will form the so called Region
of left side ROL(Pi) which describes the appearance of the local neighborhood on the
left side of the feature point and the points between Pi and Si+1 compose the Region
of right side ROR(Pi). Both ROL(Pi) and ROR(Pi) are needed in section 5.3.2 along
with the ROSh(Pi).

An alternative solution for the creation of ROSh(Pi) would be to sample every edge
with a constant number of vertices and include all sampling points according to the
definition of ROSh(Pi) in equation (2). The different outcome to the former method is
depicted in Fig. 13 b). The number of points which is used to sample one edge of a
polygon in combination with parameter h restricts ROSh(Pi) to a predefined number
of edges. Depending on the form of the polygon results of the two different methods
to create ROSh(Pi) may greatly differ (as can be seen by comparison of Fig. 13 a)
and 13 b). These difference will of course influence the properties of a feature point
described in 5.3.2 and by this the outcome of the resulting correspondence. Which
method for the creation of ROSh(Pi) delivers the better results for the solution of the
Vertex Correspondence Problem depends on the form of both source and target.

The first method to calculate ROSh(Pi) ensures that only parts of the shape between
the current feature point Pi and its predecessor Si−1 and successor Si+1 are included
into the sample. The second variant can not ensure this policy. Depending on the ratio
of points representing an edge and parameter h it can be chosen how many neighboring
edges may will be included into the sample. If these edges are between feature point
Pi and its predecessor and successor or may go beyond is not certain. Eigenvectors
and eigenvalues are directly dependent on the covariance matrix (see equation (4)). In
the first described method the parameter h has little influence on the determination of
tangent and normal eigenvector. However in the second method if the number of points
representing an edge is fixed, the parameter h has a strong influence on the determination
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Figure 13: Different methods to calculate ROSh(Pi)
a) Detected feature points are colored blue, sampling points are colored red.
Parameter h is set to 10 in this example. As you can see the sampling points
between Si−1 and Pi are farther apart than the ones between Pi and Si+1

due to the greater distance between Si−1 and Pi. In both ROL(Pi) and
ROR(Pi) all sampling points are distributed uniformly. Parameter αmax for
the detection of feature points was set to 130◦.
b) Vertices are colored blue, sampling points are colored red. Parameter h
is set to 10. Number of points representing an edge is set to 5. This means
that the 2 neighboring edges on each side of feature point Pi are included in
ROSh(Pi).

of eigenvectors and eigenvalues, since it controls how far ROSh(Pi) will spread.

5.3.2 Criteria to distinguish Feature Points

Employing the definitions from section 5.3.1 it is possible to assign several values to a
feature point which describe the form of its local neighborhood. These values will be
used to compare feature points from source and target and assign costs depending on
the similarity of the local neighborhoods. In the following the left and right Feature
Elements of a feature point shall be denoted as ROL(Pi) respectively ROR(Pi). If the
selection of the size of ROSh(Pi) adhered the suggestion made at the end of section 5.3.1,
ROL(Pi) and ROR(Pi) will include h points each.

Liu et al. (11) chose three main criteria to distinguish between the shape of a local
neighborhood near a feature point
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• Feature Variation:

The feature variation of a feature point Pi is defined as

σ(Pi) = ξ
λN

λN + λT

(5)

where λN is the normal eigenvalue, λT the tangent eigenvalue and ξ = 1 if Pi

is considered a convex feature point and ξ = −1 if Pi is considered concave (for
definition of convex / concave feature point, please refer to the corresponding
paragraphs in sections 2.2 and 3.2.1). The feature variation yields information on
the position of the points in ROSh(Pi) in respect to P̄i. If the shape in the local
area around Pi is relatively flat, the neighboring points lie close to the tangent
direction at Pi (see Fig. 12). The value of σ(Pi) is within the closed interval
[−1, 1] with the absolute value approaching 1 if Pi is the tip of a sharp curvature
and drawing near 0 if Pi is is surrounded by a flat local neighborhood.

• Feature Side Variation:

Side feature variation is defined as

τ(Pi) =
σ(ROL(Pi)) + σ(ROR(Pi))

2
(6)

where ROL(Pi) and ROR(Pi) are defined as mentioned above. For each ROL(Pi)
and ROR(Pi) a covariance is calculated (similar to the covariance of ROSh(Pi)
in equation (4) which yields eigenvalues λL

N and λL
T for ROL(Pi) and accordingly

λR
N and λR

T for ROR(Pi). Using these eigenvalues σ(ROL(Pi)) and σ(ROR(Pi))

are defined as σ(ROL(Pi)) =
λL

N

λL
N+λL

T
and σ(ROR(Pi)) =

λR
N

λR
N+λR

T
. The feature

side variation τ(Pi) is used to gain information about the appearance of the local
neighborhood on the left and right side of Pi. Similar to the feature variation
σ(ROL(Pi)) and σ(ROR(Pi)) adopt values in [0, 1] (the absence of parameter ξ
prevents negative negative values). If τ(Pi) is close to 0 the side neighbors are flat,
while high values of τ(Pi) represent bended parts in ROL or ROR.

• Feature Size

The size of a feature is measured by

ρ(Pi) =
ρL(Pi) + ρR(Pi)

2
(7)

where ρL(Pi) and ρR(Pi) denote the length of ROL(Pi) and ROR(Pi) in relation to
the total length of the shape. The value of ρ(Pi) is an indicator for its importance
in the whole shape: If ρ(Pi) yields a small value for Pi, the local neighborhood of
Pi is small in respect to the entire shape and most likely not to leave a dominant
impression on an observer (although this might not be completely true if σ(Pi)
and τ(Pi) both yield high values). High values of ρ(Pi) indicate that the local
neighborhood of Pi takes up a significant part of the total shape and thus will
likely leave a strong imprint on an observer.
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It is noteworthy to mention that all three criteria, describing geometric properties of
the local neighborhood of a feature point, are unaffected by rescaling, translation or
rotations of the shape. The choice of feature points, the size h of ROSh(Pi) and how
to draw sample points between adjacent feature points on the other hand can strongly
affect feature variation, feature side variation and feature size.

5.3.3 Similarity Costs

Section 5.3.2 established three criteria to distinguish feature points belonging to the same
shape from one another. Now these properties can be utilized to find a suitable corre-
spondence between feature points in source and target. As mentioned in the introduction
to the Vertex Correspondence Problem (see 4.1) it seems to be a good idea if areas which
are similar in source and target are tried to be matched to each other. Regions in source
and target which are alike in shape should have similar values for their feature variation,
feature side variation and feature size. So it seems feasible to compare the geometric
properties of feature points in source and target and assign costs to a pair of feature
points indicating if they and their associated regions are similar or not. Let source be
described by S = {Si | i = 0, 1, · · · ,m} and target be T = {Tj | j = 0, 1, · · · , n}. If
source and target are closed S0 = Sm and T0 = Tn respectively holds. The Similarity
Costs for a pair of feature points Si and Tj are defined as

SimCost(Si, Tj) = Ψ(Si, Tj)
∑

q=σ,τ,ρ

ωq∆q(Si, Tj) (8)

where Ψ(Si, Tj) acts as a weight to determine the importance of this correspondence
and is defined as Ψ(Si, Tj) = max{ρ(Si), ρ(Tj)} with ρ being defined as in equation (7).
This is done to focus on matching large parts of source and target with similar parts,
since large parts are generally watched more consciously during a morphing sequence
by a human observer. The term ∆q measures the costs assigned to the pair (Si, Tj) for
each of the three geometric quantities and is defined as

∆σ(Si, Tj) = |σ(Si)− σ(Tj)|,

∆τ (Si, Tj) =
1

2
(|σ(ROL(Si))− σ(ROL(Tj))|+ |σ(ROR(Si))− σ(ROR(Tj))|),

∆ρ(Si, Tj) =
1

2
(|ρL(Si)− ρL(Tj)|+ |ρR(Si)− ρR(Tj)|)

where σ, τ and ρ are defined as in equations (5), (6) and (7) respectively. Lastly ωq

describes weights for every ∆q which have to fulfill ωq ≥ 0 and 1 =
∑

q=σ,τ,ρ ωq. These
weights allow for varying importance of the three criteria to measure similarity.

5.3.4 Discard Costs

In the process to find an good solution to the Vertex Correspondence Problem it can
sometimes be helpful to omit feature points if there is no suitable match to be found.
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Intuitively it becomes clear that a feature point might be easily discarded, if its local
neighborhood is small and relatively flat, since it will probably not be observed as closely
as large and bended local neighborhoods. In order to decide which feature points might
be discarded, the three criteria of section 5.3.2 can be utilized as well. Since the absolute
values of σ(Pi), τ(Pi) and ρ(Pi) are generally larger if the local neighborhood of Pi is
highly noticeable the discard costs of a feature point Si of source S are defined as follows:

DisCost(Si) = ρ(Si)
∑

q=σ,τ,ρ

ωq|q(Si)|, (9)

where σ(Si), τ(Si) and ρ(Si) are defined as usual (see equations (5),(6) and (7)) and the
weights ωq are the same as in equation (8). Similar to equation (8) the size of the local
neighborhood is used as a coefficient to evaluate the importance of the neighborhood in
respect to the total shape. Naturally the discard costs for a feature point Tj of target T
is analogous.

5.4 Minimization of the Correspondence Problem

The similarity cost function (equation (8)) can be utilized to measure similarity not only
between two different feature points Si and Tj, but to assign costs to a correspondence
between two complete shapes S and T . A correspondence in this case means a mapping
between feature points of S with feature points of T . A similarity cost function between
S and T can be established if we consider a mapping J as J : {Si} → {Tj}:

SimCosts(S, T , J) =
m−1∑
i=0

SimCosts(Si, TJ(i)),

still bearing in mind that S has m different Feature Points. Considering the behavior
of the similarity function (equation (8)) an optimal solution for a correspondence can
be considered as a mapping J which minimizes SimCosts(S, T , J). Thus the following
problem has to be solved:

min
J
{SimCosts(S, T , J}

If S contains m feature points and T contains n feature points there would be nm

possible mappings J between S and T . An algorithm considering all possible mappings
would therefore become very inefficient. Luckily a large number of these mappings may
be disregarded, because most of these mappings do not take into account that it would
be suitable for a morph, if J : Si → Tj holds, Si+1 should be mapped to a feature
point in T which is close to Tj. In this case “close” means that Si+1 should correspond
to some Feature Point Tk ∈ {Tk | k = i − l, i − l + 1, . . . , i − 1, i + 1, . . . , i + l} for
some integer l. How this restricted minimization problem can be solved efficiently using
Dynamic Programming techniques will be shown in 5.4.2. In 5.4.1 a short introduction
into Dynamic Programming will be presented. If you are already familiar with the
concept of Dynamic Programming you might want to skip 5.4.1 and move straight to
5.4.2.

Sven Albrecht 30



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

5.4.1 Dynamic Programming

The information presented here on dynamic programming is based on an article by Wag-
ner (21). Since it is not necessary to cover more than the basic principles of dynamic
programming, in order to understand the methods employed to solve the Vertex Cor-
respondence Problem the material presented in this section will not be as extensive as
Wagners remarks on this topic. If you are interested in more information on dynamic
programming reading (21) as a more complete introduction is strongly recommended.

Basic Principles of Dynamic Programming It is a common technique in computer
science to divide a large problem into smaller subproblems which can be solved easier, if
it is possible to reconstruct a solution to the original problem by combining the solutions
of the subproblems. However it is often not possible to split the original problem into a
small number of easily solvable subproblems, but solutions to a large number of subprob-
lems are often required. In some cases the subproblems themselves have to be divided
into smaller subproblems again, so that the number of problems that need to be solved
may increase exponential. Oftentimes problems with this peculiar nature are solved by
recursive methods, because they present very natural and easily implementable solutions.
In most cases these recursive solutions become very inefficient, because of many identical
calls during the solution of the original problem. If a problem shows this behavior it is
commonly referred to as an overlapping subproblem property. Dynamic programming
techniques can be used to make solving such problems more efficiently. In many cases
dynamic programming also benefits if the problems have an optimal substructure. Opti-
mal substructure means that optimal solutions for subproblems can be used to construct
an optimal solution for the original problem. An example for optimal substructure could
be finding the shortest path from a vertex to a goal in an acyclic graph: In a first step
the distances to all vertices adjacent to the goal will stored. Each of those distances can
be considered as the optimal path connecting that vertex with the goal. If optimal paths
from the start vertex to the vertices adjacent to the goal can be found, it is possible to
construct from both optimal solutions of the subproblems (e.g. the optimal paths from
start vertex to the adjacent vertices and the optimal paths from the adjacent vertices
to the goal) several solutions to solve the whole problem. Of these solutions the one is
optimal which has the shortest path. If a problem has optimal substructure a three-step
schematic can be applied to solve problems belonging to this class:

1. Divide the problem into smaller subproblems

2. Solve these subproblems optimally either

• if the problem is simple calculate optimal solution, or

• using this three-step schematic

3. Use these optimal solutions to construct an optimal solution for the original prob-
lem
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As you will notice, this schematic is recursively itself, which emphasizes that problems
featuring the attributes mentioned above can be solved using recursive algorithms quite
often.

Algorithms which extend the original function in some way during the computation
time are clustered in the term dynamic programming. This can be done by ordering the
problems and solving the problem from simpler to more complex subproblems, with the
intention to solve each subproblem before it is needed in the computation of another
subproblem. On the other hand it is often a nontrivial problem itself to find a suitable
ordering of the different subproblems. In many cases a dynamic programming technique
can be applied which avoids scheduling the subproblems. This technique is often referred
to as memoization (not memorization, although that would also be an appropriate name)
or result catching. The idea of memoization is to store all evaluations of subproblems
which have been computed once and if the subproblem needs to be evaluated for a second
and subsequent time just to return the stored value. Thus evaluation of once computed
subproblems needs constant computational time, for returning the already computed
value and the overall running time can be reduced significantly in many cases.

These sums up the basic principles of dynamic programming. In the following para-
graph a simple example will be presented to illustrate the techniques of dynamic pro-
gramming and memoization. Readers who feel already comfortable with the depicted
concepts might want to skip the following paragraph.

Dynamic Programming example: Fibonacci numbers A common example to illus-
trate the principles of memoization are the Fibonacci numbers. Similar to the Tower
of Hanoi problem which is often used to illustrate the principles of recursion, the Fi-
bonacci numbers are concise enough for an introductory example and still provide all
the elements to visualize the general ideas.

The Fibonacci numbers are a sequence of numbers constructed in the following fashion:
Fi = Fi−1 + Fi−2, most often with the initial assumptions F0 = 1 and F1 = 1. The
computation of F5, for example, would result in the following sequence of function calls:

F5 = F4 + F3

= (F3 + F2) + F3

= ((F2 + F1) + F2) + F3

= · · ·
= (((F0 + F1) + F1) + (F0 + F1))︸ ︷︷ ︸

F4

+ ((F0 + F1) + F1)︸ ︷︷ ︸
F3

(10)

as you can see, many subproblems have to be solve multiple times. For instance F3 first
has to be solved to get a solution for F4 and has to be solved later again in order to
deliver a result for F5 in combination with F4. The schematic order of function calls is
depicted in Fig. 14, in more detail.

Memoization avoids these multiple computation of subproblems. In the small example
if F3 is solved the first time, memoization stores the solution F3 = 3 and if F3 is needed
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Figure 14: Schematic of recursive call of Fibonacci function
Function calls are depicted as circles, reaching the termination of a recursive
call is indicated with a square. The blue numbers display the order of the
function calls, while the red numbers display the return values.

Figure 15: Schematic of Fibonacci function with memoization
Same colors and symbols as in Fig. 14, please observe the reduced number of
function calls, if memoization is used. In larger examples even more function
calls would be avoided.
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for a second and subsequent times returns the stored value instead of calling F2 and F1

to solve F3. For a visual comparison of the function call of F5 with memoization please
compare the schematic of Fig. 15 with Fig. 14

For the calculation of larger Fibonacci numbers or problems where subproblems require
more complex computations, this simple technique enhances the performance consider-
ably.

5.4.2 Solving the Minimization Problem

If source S includes m feature points and target T n respectively all possible corre-
spondences between vertices can be depicted in an m× n rectangular graph where rows
represent feature points Si of S and columns represent feature points Tj of T . A node
in the graph at the intersection of row i and column j will be denoted as node(i, j). A
node(i, j) indicates a correspondence between Si and Tj and with a sequence of nodes
starting at node(0, 0) and ending at node(m,n) a complete correspondence between S
and T can be described. In the following such a sequence will be called a path Γ. Please
note that the nodes a path Γ do not necessarily have to be adjacent and if both shapes
are closed, conditions S0 = Sm and T0 = Tn hold. An exemplary dynamic programming
graph containing a path Γ is depicted in Fig. 16.

Figure 16: Example for a DP graph containing a complete path Γ

If the path contains R + 1 nodes it will be noted as Γ = ((i0, j0), (i1, j1), · · · , (iR, jR)),
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where to satisfy the requirements, mentioned above (i0, j0) refers to node(0, 0) and
(iR, jR) refers to node(m,n). A node node(ir−1, jr−1), 1 ≤ r ≤ R will be referred to
as the parent of node(ir, jr). Sequences of consecutive feature points of S will be de-
noted as S(i | i + k), meaning Si, Si+1, · · · , Si+k. The same notation will be used for
T .

The costs for a complete path Γ, containing R + 1 nodes of S and T are defined as:

Costs(S, T , Γ) =
R∑

r=1

δ(S(ir−1 | ir), T (jr−1 | jr)), (11)

where the term δ(S(ir−1 | ir), T (jr−1 | jr)) assigns costs depending on the similarity of
S(ir−1 | ir) and T (jr−1 | jr):

δ(S(ir−1 | ir), T (jr−1 | jr)) = DisCosts(S(ir−1 | ir)) (12)

+ DisCosts(T (jr−1 | jr))

+ λ · SimCosts(Sir , Tjr),

where

DisCosts(S(ir−1 | ir)) =
ir−1∑

k=ir−1+1

DisCosts(Sk)

As you will notice, DisCosts(S(ir−1 | ir)) accumulates the costs for discarding all fea-
ture points between Sir−1 and Sir . Depending on the actual values of indices ir−1 and
ir DisCosts(S(ir−1 | ir)) might return 0 costs, for example if ir−1 + 1 = ir holds.
DisCosts(T (jr−1 | jr)) are defined analogous. The coefficient λ is a weight which can
be used to influence the importance of finding good matches relative to discarding feature
points. If λ is set to a high value the influence of the discard costs on the whole costs are
reduced, discarding feature points is encouraged. Very low values for λ increase the in-
fluence of discard costs in equation (12) thus preventing the discard of many consecutive
points. The choice of λ should depend on the kind of shapes that will be morphed: If the
shapes contain many feature points a large value for λ is recommended. Shapes with few
feature points should be morphed with λ ≤ 1 so that the majority of the existing feature
points will be matched. The choice of λ = 1 seems to be a “neutral” value, which works
in many cases quite good. Equation (11) yields the costs for a complete path, by adding
up the costs for all nodes in Γ (e.g. all similarity costs SimCost(Sk, Tl), ∀ node(k, l) ∈ Γ)
and the costs for discarding all feature points which are not included in Γ.

Discarding points can be beneficial for the total costs of a path if there is no suitable
correspondence for a feature point. If the other feature points correspond well with each
other the discard costs of one feature point might be less than the additional similarity
costs that may arise if all other feature points change their correspondence. A scenario
where discarding a feature point is beneficial is depicted in Fig. 17

This way equation (11) allows to determine the costs associated with a certain path
and thus determine which path to prefer (i.e. prefer the path with less assigned costs).
For the construction of such a path dynamic programming techniques are exploited. As a
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Figure 17: Skips during the creation of a complete path
Corresponding feature points are colored blue, discarded feature points are
colored red, normal vertices are colored gray. If the correspondence between
Si and Tj is set, the best previous correspondence would be the one between
Si−1 and Tj−1. The discarded feature point in polygon T has no suitable
match in S, since there is no concave point. So discarding will be beneficial
instead of enforcing a correspondence with Si−1.

basis a correspondence between the first feature points of S and T is stored by calculating
SimCost(S0, T0) and storing that value in node(0, 0). With this initial correspondence
it is possible to determine the optimal predecessor for node(i, j) using the following
equation:

node(i, j) = min
k,l
{node(i− k, j − l) + δ(S(i− k | i), T (j − l | j))}, (13)

with k, l ≥ 0 and not k = l = 0. Equation (13) finds the best predecessor for node(i, j)
comparing the whole costs for the incomplete path starting at node(0, 0) and ending
at node(i, j). The costs are the sum of the costs leading to all possible predecessors
of node(i, j) and the transition costs from that predecessor to node(i, j) using equation
(12). If the values of k and l have been calculated, they are stored in node(i, j) as well as
the cumulative costs for the incomplete path ending at node(i, j). This way it is possible
to backtrack the path from a node to its predecessor. Upper boundaries kmax lmax for
parameters k and l are used to configure how many feature points are allowed to be
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omitted while trying to find the best predecessor. For instance if kmax is set to 1, then
the algorithm is not allowed to omit any feature points of S, if kmax is set to 2 a maximum
of 1 feature point may be discarded while searching for the best predecessor. Equation
(13) is a recursive formula, where for node(i, j) all allowable nodes (determined by kmax

and lmax) have to be solved as subproblems, which in turn will have several subproblems
as well, to find their optimal predecessors. To enhance the algorithm the technique of
memoization briefly sketched in section 5.4.1 is used: Instead of calculating the same
subproblems again and again, the path costs and the optimal predecessor are stored
in each node. To construct a complete path the algorithm starts at node(0, 0). After
this initial step the optimal predecessors for each node in the two dimensional field of
all possible nodes are calculated line by line, ending with node(m,n). If node(m,n) is
reached the optimal path leading to this node can be reconstructed by back tracking all
predecessors up to node(0, 0). This path is the complete correspondence with the least
costs. Finding the best possible predecessor for a node(i, j) is depicted in Fig. 18.

Figure 18: Choosing between allowed predecessors in the DP graph
The current node(i, j) is depicted as the large red point with a black border.
In this example parameters k and l for the allowed number of skips are set
to 4. Blue points show allowed predecessors of node(i, j) are marked by blue
points. For three possible predecessors, colored red, green and yellow the
incomplete path (see equation (13)) leading to those nodes is depicted as
well. The red colored node is meant to be the optimal predecessor in the
depicted scenario.

The above algorithm allows for one feature point of S to correspond with more than

Sven Albrecht 37



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

one feature point of T and vice versa. How to deal with such cases will be discussed
later in this section. If no skips are allowed during the matching process (i.e. l, k ≤ 1 in
equation (13)) all in all the algorithm needs to check 3mn nodes: For each node (apart
from node(0, 0), node(1, 0) and node(0, 1)) node(i, j) has 3 possible predecessors which
have to be checked (node(i − 1, j), node(i, j − 1) and node(i − 1, j − 1). Hence if no
skips are allowed in path Γ the algorithm is in O(mn), still assuming that S has m
feature points and T has n. However if it is desired to omit feature points during the
matching process, the runtime complexity increases to O(kmaxlmaxmn). So the values
for kmax and lmax should be considered carefully. In most cases it is reasonable to assume
kmax, lmax ¿ m,n since matching single pairs of feature points with huge gaps between
the pairs are often not desired. If equation (13) is simplified a bit to kmax = lmax = C
the runtime complexity becomes O(C2mn).

As you will have recognized the choice of the initial correspondence node(0, 0) to
construct a complete path is somewhat random and does in many cases not guarantee the
desired result of the correspondence with the least possible costs. For non-closed shapes
this initial assumption is reasonable since the both ends of a shape should generally
correspond with each other. In the case of closed shaped however the algorithm has
to be repeated with all possible initial correspondences in order to guarantee that the
complete correspondence with the least possible costs is actually found. Since there are
mn possible initial correspondences the runtime complexity becomes O(C2m2n2).

Creating a 1:1 correspondence from a path The optimal path found through the
algorithm depicted above still is not what is required to start the morphing process.
In a complete correspondence is is possible to have one feature point correspond with
multiple other feature points, but before any animation can start a 1:1 correspondence
is highly favorable. In order to create a 1:1 correspondence all feature points with more
than one correspondence must be examined. Of all multiple assigned correspondences to
a feature point the one with the least similarity costs is kept, all other correspondences
are to be ignored. After this step every feature point has at most one correspondence.
Now the points which eventually lost a correspondence in the previous step need a new
correspondence. This is done by either assigning another free feature point or by creating
a new point that will correspond with the feature point. The first case is applicable, if
for a Feature Point Si there exists at least one unassigned feature point Tj between the
correspondences Tjpred

and Tjsucc of the nearest feature points Si−a and Si+b of Si which
have correspondences. If no such free candidate Tj for a correspondence exists a new
point will be inserted on the curve curve between Tjpred

and Tjsucc . In the creation of
this point it is advised to take the distance from Si to Si−a and Si+b into account and
create the new point featuring the same relative distances to Tjpred

and Tjsucc .
One might wonder how to deal with discarded feature points. If they would just disap-

pear between two frames in the morphing process it might possibly raise the attention of
an observer. The costs for discarding a feature point can also be interpreted as the costs
to match this feature point with another feature point where all criteria (see equations
(5),(6) and (7)) yield 0. If discarding a feature point is interpreted this way, it allows
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to insert new points into a shape which as long as they do not affect the appearance of
the shape and let them correspond with the discarded feature points. The construction
of such points is similar to the case of feature points where no free candidate for a cor-
respondence exists (see above). After all this is done, a 1:1 correspondence between all
points of S and T is established and algorithms to deal with the Vertex Path Problem
can be applied. Section 6 will show, how these algorithms were realized in the Java
programming language.
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6 Implementation in the Java programming language

There are two principal reasons why the implementation of the algorithm, described in
section 5, was done using the Java programming language. First, programs written in
the Java programming language are platform independent, which allows usage of the
application presented in section 7 on every computer, on which a current version of the
Java Runtime Environment is installed, without further modifications. Secondly the
Java programming language enables running programs in a common web browser very
comfortably via applets. This way the application can also be used via internet.

In the following a short overview of the main classes needed in the application (see
section 7) will be given, partly with excerpts of the source code partly in the form of
UML diagrams. Readers who are only interested in the usage of the application and not
in the programming details might want to skip this section.

6.1 Overview of the class hierarchy

At this point the whole project currently consists of approximately 9300 lines of code,
distributed over 40 classes and split into 7 packages. The packages are called shapes,
math, featureDetection, tools, morphing, controls and application. In the fol-
lowing sections the general purpose of each package will be described and some of their
important classes will be introduced.

6.1.1 Package shapes

Though the application deals with the morphing of polygons it is sensible to implement
more than just a polygon class to represent a two dimensional polygon. The base class
in package shapes is the abstract class GraphicObject, all other classes contained in
the package are subclasses of GraphicObject. For a class diagram of shapes please
refer to Fig. 19.

Two abstract methods in GraphicObject are essential for all other classes in pack-
age shapes. The paint(Graphics) method is needed to display a class derived from
GraphicObject and will be called in the application every time a GraphicObject is
manipulated and its display needs to be updated. Method toSVG() enables a subclass
of GraphicObject to be exported to the SVG format (see (20)).

The direct subclass Point and its subclass FeaturePoint were implemented to model
the characteristics of the approach described in section 5. Since the approach distin-
guishes between vertices and feature points it seemed sensible to do the same in the
class hierarchy, especially since a feature point has several additional attributes like its
feature variation, feature size etc. (see 5.3.2) which are not needed for a simple ver-
tex in a polygon. For that reason the class Polygon may contain instances of Points

and of FeaturePoint as its vertices. The Point class itself represents a point in a two
dimensional plane with two coordinates (referred to as x and y). To ensure that every
instance of a point can be displayed in the application, the values for x and y have a
lower and upper boundary, which is set in the Point class. Important for the solution

Sven Albrecht 40



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

FeaturePoint

FeaturePoint()

FeaturePoint(x : int,y : int)

FeaturePoint(p : Point)

FeaturePoint(fp : FeaturePoint)

FeaturePoint(x : int,y : int,factor : int)

setFeat_var(feat_var : double) : void

getFeat_var() : double

setSide_var(side_var : double) : void

getSide_var() : double

setFeat_size(feat_size : double) : void

getFeat_size() : double

setR_feat_var(r_feat_var : double) : void

getR_feat_var() : double

setL_feat_var(l_feat_var : double) : void

getL_feat_var() : double

setR_size(r_size : double) : void

getR_size() : double

setL_size(l_size : double) : void

getL_size() : double

setPrepared(prepared : boolean) : void

isPrepared() : boolean

toString() : String

getDisCost() : double

calculate_Dis_Costs() : void

setAngle(angle : double) : void

getAngle() : double

calculate_Sim_Cost(s : FeaturePoint,t : FeaturePoint) : double

compareTo(fp : FeaturePoint) : int

clone() : FeaturePoint

compareTo(o) : int

feat_var : double

side_var : double

feat_size : double

dis_cost : double

r_feat_var : double

l_feat_var : double

r_size : double

l_size : double

prepared : boolean

angle : double

GraphicObject

GraphicObject()

GraphicObject(factor : int)

setFactor(factor : int) : void

getFactor() : int

toString() :

paint(g) : void

contains(p : Point) : boolean

toSVG() :

factor : int

Line

+Line(start : Point,end : Point,factor : int)

+setStart(start : Point) : void

+getStart() : Point

+setEnd(end : Point) : void

+getEnd() : Point

+paint(g) : void

+contains(p : Point) : boolean

+toSVG() :

start : Point

end : Point

Point

Point()

Point(x : int,y : int)

Point(p : Point)

Point(x : int,y : int,factor : int)

getX() : int

getY() : int

setX(x : int) : void

setY(y : int) : void

setConvex() : void

setConcave() : void

getConvex() : boolean

setCorrespondence(correspondence : Point) : void

getCorrespondence() : Point

hasCorrespondence() : boolean

clearCorrespondence() : void

equals(p : Point) : boolean

toString() : String

paint(g) : void

contains(p : Point) : boolean

clone() : Point

toSVG() : String

x : int

y : int

correspondence : Point

MaxX : int

MaxY : int

Min : int

Polygon

Polygon()

Polygon(start : Point,factor : int)

Polygon(start : Point,region : int,factor : int)

Polygon(start : Point,region : int,factor : int,dashed : boolean)

Polygon(original : Polygon)

Polygon(p : Polygon,i : int)

addVertex(p : Point) : void

getVertex(index : int) : Point

isVertex(p : Point) : boolean

addVertexBehind(p : Point,q : Point) : void

addVertexBefore(p : Point,q : Point) : void

addVertexBetween(p : Point,q : Point,r : Point) : void

getFeaturePoints() : Vector

getAllVertices() : Vector

getSample(sample_rate : int) :

getSampleArray(sample_rate : int) : int[]

getLength() : double

close() : void

getFeaturePoint(index : int) : FeaturePoint

getFeaturePointIndex(fp : FeaturePoint) : int

getIndex(p : Point) : int

getCount() : int

getFeaturePointCount() : int

setRegion(region : int) : void

getRegion() : int

contains(p : Point) : boolean

isConvex(p : Point) : boolean

isClosingPoint(p : Point) : boolean

isClosed() : boolean

setAllVerticesToFeaturePoints() : void

setDashed(dashed : boolean) : void

isDashed() : boolean

preparePolygon(sample_rate : int,range : int) : void

changeSize(factor : double) : void

deleteCorrespondences() : void

toString() : String

paint(g) : void

clone() : Polygon

toSVG() : String

toSVGPath() : String

toSaveFormat() : String

fp_count : int

total_count : int

featurePoints : Vector

all_vertices : Vector

sample_rate : int

lastsample : Vector

closed : boolean

changed : boolean

dashed : boolean

region : int

is feature point

0..*

containsfeature point

is vertex

0..*

contains1

Figure 19: Class hierarchy of package shape
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of the VCP is the data field Point.correspondence, where a corresponding point can
be referenced.

6.1.2 Package math

The package math contains tools to calculate the more complicated mathematical prop-
erties of the algorithm, namely covariances, eigenvectors, eigenvalues and the bisector of
the inner angle at a vertex. These tools are summarized in just two classes (see Fig. 20).
First, class covariance covers the calculation of the center of a region of support and
the covariance for a region of support (see 5.3.1, equation (3, 4)). In addition a method
to calculate the dot product of two vectors (dotProduct(double, double, double,

double)) and a method to calculate the bisector (getBisector(Vector)) are included.
The method covariance(Vector) is optimized in terms of runtime and storage usage
for the special case needed in the algorithm, namely symmetrical 2×2 matrices and will
not deliver correct results for calculation of general covariance matrices. All methods
try to avoid the usage of arrays or array like structures as much as possible to ensure
fast calculations. Further information on speed optimization, when programming in the
Java programming language can be found in (19).

In class Eigenvalue methods are collected to calculate eigenvectors and eigenvalues of
covariance matrices. To calculate eigenvectors and eigenvalues of a covariance method
hqr2(double[][], double[][]) can be used which is an adaption to the Java pro-
gramming language of a FORTRAN method contained in the EISPACK library (6). In
the implemented variation the method can deal with symmetrical covariances with real
entries. For unsymmetrical covariances or covariances containing complex entries the
method will deliver wrong results. Based on this adaption and even more optimized for
the restricted case, needed in the algorithm, the methods hrq tweaked(double[][])

and eigenvalue(double, double, double) calculate eigenvectors and eigenvalues re-
spectively more efficiently.

Since all classes contained in package math just deliver results used in the calculation
of the feature point properties (see 5.3.2) all methods in this package are in fact static
methods. Splitting the methods in two different classes was not necessary, but integrates
methods with similar properties and usage into a common class.

Covariance

+calculate_center(v) : double[]

+covariance(v) : double[][]

+dotProduct(a1 : double,a2 : double,b1 : double,b2 : double) : double

+getBisector(v) : double[]

Eigenvalue

+eigenvalue(a : double,b : double,c : double) : double[]

+hqr2(a : double[][],b : double[][]) : double[]

+hrq_tweaked(a : double[][]) : double[]

Figure 20: Class hierarchy of package math
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6.1.3 Package featurePointDetection

In package featurePointDetection two classes are contained which are used to detect
feature points in a polygon. A class diagram of package featurePointDetection is
depicted in Fig. 21.

Class FeaturePointDetector is the main class in the package with class QuickSort

being a utility class used by FeaturePointDetector. In class FeaturePointDetector

mostly two methods are of interest: First, featureDetection(Polygon) which detects
feature points in a polygon employing the methods described in 3.2. The method
filterMostProminent(Polygon) can be used in experiments. Given an integer value
l as an upper limit the method sorts all feature points according to their sharpness
(see 3.2.1) and accepts only the l feature points with the greatest sharpness.

FeaturePointDetector

+FeaturePointDetector()

+FeaturePointDetector(max_angle : double,min_size : double,max_featurePoints : int)

+featureDetection(p : Polygon) : Polygon

+filterMostProminent(p : Polygon) : void

-isFeaturePoint(start : Point,middle : Point,end : Point,polygon_length : double) : boolean

+setMax_angle(max_angle : double) : void

+getMax_angle() : double

+setMin_size(min_size : double) : void

+getMin_size() : double

+setMax_featurePoints(max_featurePoints : int) : void

+getMax_featurePoints() : int

-max_angle : double

-min_size : double

-max_featurePoints : int

-angle : double

QuickSort

+sort(p : FeaturePoint[]) : void

-quicksort(p : FeaturePoint[],lower : int,upper : int) : void

Figure 21: Class hierarchy of package featurePointDetection

6.1.4 Package tools

Package tools contains all classes that are used as tools by other classes, but have
no significant similarities that would justify another package. For a swift overview of
all classes, please observe Fig. 22. Noteworthy is class Path which is used to store
the path through a dynamic programming graph (see 5.4.2) and by that a complete
correspondence between source and target. Instances of class Node represent path nodes
of the dynamic programming graph (see 5.4.2). References of the two corresponding
feature points are stored along with the optimal predecessor node and the costs of the
incomplete path ending at the current node (see 5.4.2, equation (13)). In Bresenham the
well-known line algorithm of Jack Bresenham (3) is adapted in the Java programming
language. The class Constants contains no method, but is used to store all initial values
for all parameters of the algorithm in one place.

6.1.5 Package controls

In package controls most classes implement the interface ActionListener defined in
package java.awt.event. These classes are mainly used to handle user interaction
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Bresenham

draw(p : Point,q : Point,g,factor : int) : void

sample(p : Point,q : Point,sample_rate : int,offset : int) :

semiUniformSample(p : Point,q : Point,sample_rate : int) :

dashedLine(p : Point,q : Point,g,factor : int) : void

getLength(vector) : double

setPixel(x : int,y : int,factor : int,g) : void

setFatPixel(x : int,y : int,factor : int,g,c) : void

last_counter : int

Constants

addIntoGrid(panel,comp,gridbag,c) : void

WEIGHTS : double[]

DENOMINATORS : int[]

LAMBDA : double

MAX_SKIPS : int

MAX_FPS : int

MIN_FPS : int

NORM_FPS : int

MAX_STEPS : int

NORM_STEPS : int

MIN_STEPS : int

MIN_TIME : double

MAX_TIME : double

NORM_TIME : double

ROS_SIZE : int

SAMPLE_RATE : int

MAX_ANGLE : double

MIN_LENGTH : double

MAX_FEATUREPOINTS : int

BLACKLINE

Node

Node()

Node(sourcePoint : FeaturePoint,targetPoint : FeaturePoint)

Node(sourcePoint : FeaturePoint,targetPoint : FeaturePoint,simcosts : double)

Node(x : int,y : int)

Node(x : int,y : int,simcost : double)

Node(x : int,y : int,sourcePoint : FeaturePoint,targetPoint : FeaturePoint)

Node(x : int,y : int,sourcePoint : FeaturePoint,targetPoint : FeaturePoint,simsosts : double)

setX(x : int) : void

getX() : int

setY(y : int) : void

getY() : int

setSourcePoint(sourcePoint : FeaturePoint) : void

getSourcePoint() : FeaturePoint

setTargetPoint(targetPoint : FeaturePoint) : void

getTargetPoint() : FeaturePoint

setSimCosts(simcost : double) : void

setPredecessor(pred : Node) : void

getPredecessor() : Node

equals(other : Node) : boolean

equalsComplete(other : Node) : boolean

getSimCosts() : double

setPathCosts(path_costs : double) : void

getPathCosts() : double

clone() :

toString() :

x : int

y : int

similarity_costs : double

optimal_predecessor : Node

path_costs : double

sourcePoint : FeaturePoint

targetPoint : FeaturePoint

Path

Path()

Path(original : Path)

clear() : void

add(node : Node) : boolean

setCosts(costs : double) : void

getCosts() : double

toArray() : int[][]

setSimCosts(costs : double[][]) : void

getNodes() :

isClosed() : boolean

getFinalPath() : Path

getNodeAt(i : int) : Node

getSize() : int

toString() :

nodes

size : int

costs : double

min_x : int

max_x : int

min_y : int

max_y : int

contains

0..*

Figure 22: Class hierarchy of package tools

with the application and update the other classes. Package controls also contains the
interface Resetable which forces every class that implements the interface to include
a method reset() that will be used to put a class back to the state it had right after
calling its constructor. A class diagram of controls is depicted in Fig. 23.

6.1.6 Package morph

Package morph accumulates the classes which are mainly concerned with the creation of a
morphing sequence. Class MorphCalculator contains two main methods. The first one
is able to construct a path through the dynamic programming graph (see section 5.4.2).
The second one is able, given such a path, to create two polygons which have the same
outer appearance as source and target, but may contain additional vertices along the
edges. These polygons have a 1:1 correspondence and act as first and last frame of the
morphing sequence. In class Animator all in-between frames are computed given the first
and the last frame of the morphing sequence. The animation paths used here are straight
lines. The third and last class contained in this package is responsible for displaying the
morphing sequence in the GUI and is a direct subclass of java.lang.Thread. Source
code excerpts of the methods employed to create path through the dynamic programming
graph can be found later on in 6.2.3.

6.1.7 Package application

In this package finally all classes are contained which are used to construct the GUI.
Single elements of the GUI like the drawing panels and their corresponding sliders or the
menu to set the parameters for the feature detection are capsuled in an own class. All
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AnimationSliderListener

<<create>> AnimationSliderListener(ec : ExtendedController)

stateChanged(e : ChangeEvent) : void

model : Model

ec : ExtendedController

CGSliderListener

ClearButtonListener

<<create>> ClearButtonListener()

append(r : Resetable) : void

actionPerformed(e : ActionEvent) : void

rv : Vector

LoadButtonListener

<<create>> LoadButtonListener(ec : ExtendedController)

actionPerformed(e : ActionEvent) : void

readPolygonFile(model : Model,f : File,polygon : Polygon) : void

getExtension(f : File) : String

ec : ExtendedController

PolygonListener

<<create>> PolygonListener(model : Model,region : int)

<<create>> PolygonListener(model : Model,region : int,description : String)

setModel(model : Model) : void

getModel() : Model

setRegion(region : int) : void

getRegion() : int

mousePressed(e : MouseEvent) : void

mouseExited(e : MouseEvent) : void

mouseMoved(e : MouseEvent) : void

toString() : String

model : Model

poly : Polygon

region : int

dl : Line

dashedMode : boolean

startDashedLine : Point

dashedPoly : Polygon

description : String

<<interface>>

Resetable

reset() : void

SaveButtonListener

<<create>> SaveButtonListener(ec : ExtendedController,parent : Component)

actionPerformed(e : ActionEvent) : void

getExtension(f : File) : String

changeFileExtension(f : File,extension : String) : File

ec : ExtendedController

parent : Component

Figure 23: Class hierarchy of package controls

these classes are combined in class ExtendedController to create the GUI and enable
all user interaction. Finally class Start contains just a method which creates an instance
of ExtendedController to start the application.

6.2 Implementation of the algorithm in detail

In this section the implementation of the algorithm described in theory in section 5 will
be discussed in more detail. Section 6.2.1 will show how the algorithm of Chetverikov
and Szabó (5) was modified to process two dimensional polygons efficiently. In 6.2.2 some
details on the calculation of the three properties for a feature point (Feature Variation,
Feature Side Variation and Feature Size (see 5.3.2)) will be displayed. Details on the
implementation of the dynamic programming path algorithm will be presented in 6.2.3.
In all these sections only small excerpts of the source code will be shown, which seemed
suitable to illustrate how to realize the basic ideas of the algorithm of Liu et al. If you
are interested in more parts of the source code, please feel free to ask the author.

6.2.1 Detecting feature points

The feature point detection, discussed in section 3.2 was able to detect points of high
curvature in general two dimensional shapes. As already proposed in the later parts of
that section the algorithm can be simplified in the case of two dimensional polygons. In
a polygon only vertices qualify as candidates for a feature point, therefore a sampling
of the polygon is not needed for the detection of feature points. Also the construction
of different triangles (see 3.2.1) is gratuitous, the edges connecting a vertex with its
neighbors already fulfill this purpose. That leaves the computation of the inner angle for
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convex or the outer angle for concave vertices and as a second criteria the relative length
of both edges at the vertex to the total length of the polygon. Every instance of class
FeaturePointDetector has two data fields (double max angle and double min size)
where the upper limit for the angle and the lower limit for the proportional length of a
valid feature point are stored. In table 1 an excerpt of class FeaturePointDetector is
displayed, that illustrates how the demands mentioned above have been realized.

In table 1 only the source code for the case of closed polygons is depicted, the case of
an unclosed polyline is handled in the else block, starting in line 36, but was left out,
because it does not differ significantly from the closed case. As you might have already
noticed instead of modifying parameter Polygon p the method creates a new polygon
(called detected) which will later contain the same number of vertices, but is able to
distinguish if a vertex is just a normal vertex or a feature point. The for-loop from line
15 to line 26 checks every vertex, except the last vertex if it qualifies as a feature point.
The checking is done by method isFeaturePoint(Point, Point, Point, double),
called in line 17. Method isFeaturePoint(·) is described in the following: If a point is
recognized as a feature point a new feature point with the geometric properties of the
point is created and inserted into polygon detected (line 17). If the point is rejected,
it will be inserted as a normal point (line 22).

Method isFeaturePoint (see table 2) expects 4 arguments. The first arguments are of
type Point, where middle should be a reference to the vertex which is currently checked
for being a feature point and start and end are its predecessor and successor respectively.
The double value called polygon length should contain the total Euclidean distances
of all edges of the current polygon. In lines 5 to 8 the vectors from vertex middle

pointing to its neighbors are calculated. Line 10 calculates the dot product of these
vectors. In lines 11 and 12 the Euclidean distances between middle, its predecessor and
successor are calculated. Line 13 calculates the angle at vertex middle, according to
cos θ = 〈u,v〉

‖u‖‖v‖ . Line 15 checks if the calculated angle is smaller than the upper limit
and line 17 determines if the part influenced by vertex middle is large enough to be
significant for the total polygon. If both conditions are satisfied vertex middle qualifies
for being a feature point and the method will return true, in all other cases the method
will return false.

6.2.2 Calculation of feature properties

The calculation of the feature properties is quite straight forward. A 64-bit floating
point value provided in the Java programming language by the simple data type double
is sufficiently accurate to handle all calculations needed. Once all feature points of a
polygon have been determined the properties for every point have to be calculated. The
calculation of the covariance (see table 3) for a region of support of a feature point can be
simplified due to the exclusive occurrence of symmetrical 2× 2 matrices containing real
values. Thus a matrix A can be represented by 3 double values (for position a1,1, a1,2

and a2,2 since a1,2 = a2,1 holds). Therefore during the calculation in lines 10 to 20 no
access of array elements is necessary which helps to increase efficiency. Lines 12 and 13
compute the x and y values for Pj − P̄i (see equation 4) and the peculiar nature of the

Sven Albrecht 46



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

public class FeaturePointDetector {

private double max angle ;
private double min s i z e ;

5 . . .
public Polygon f ea tu r eDe t e c t i on ( Polygon p) {

Polygon detec ted = new Polygon ( ) ;
i f (p . i sC l o s ed ( ) ) {

int count = p . getCount ( ) ;
10 Point s ta r t , middle , end ;

s t a r t = p . getVertex ( count−1) ;
middle = p . getVertex (0 ) ;
double po lygon length ;
po lygon length = p . getLength ( ) ;

15 for ( int i = 1 ; i < count ; i++) {
end = p . getVertex ( i ) ;
i f ( i sFeaturePo int ( s ta r t , middle , end , po lygon length ) ) {

detec ted . addVertex (new FeaturePoint ( middle ) ) ;
( ( FeaturePoint ) detec ted . getFeaturePo ints ( ) . lastElement ( ) ) .

setAngle ( ang le ) ;
20 }

else {
detec ted . addVertex (new Point ( middle ) ) ;

}
s t a r t = middle ;

25 middle = end ;
}
end = p . getVertex (0 ) ;
i f ( i sFeaturePo int ( s ta r t , middle , end , po lygon length ) ) {

detec ted . addVertex (new FeaturePoint ( middle ) ) ;
30 ( ( FeaturePoint ) detec ted . getFeaturePo ints ( ) . lastElement ( ) ) .

setAngle ( ang le ) ;
}
else

detec ted . addVertex (new Point ( middle ) ) ;
de tec ted . c l o s e ( ) ;

35 }
else {

. . .
}
return detec ted ;

40 }
}

Table 1: Excerpt of class FeaturePointDetector
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private boolean i sFeaturePo int ( Point s ta r t , Point middle , Point end ,
double po lygon length ) {

double s t a r t midd l e x , s t a r t midd l e y , end middle x , end middle y ;
double dotProd , length1 , length2 , r e l a t i v e l e n g t h ;

5 s t a r t m idd l e x = s t a r t . getX ( ) − middle . getX ( ) ;
s t a r t m idd l e y = s t a r t . getY ( ) − middle . getY ( ) ;
end middle x = end . getX ( ) − middle . getX ( ) ;
end middle y = end . getY ( ) − middle . getY ( ) ;

10 dotProd = Covariance . dotProduct ( s ta r t midd l e x , s t a r t midd l e y ,
end middle x , end middle y ) ;

l ength1 = Math . sq r t (Math . pow( s ta r t midd l e x , 2) + Math . pow(
s ta r t midd l e y , 2) ) ;

l ength2 = Math . sq r t (Math . pow( end middle x , 2) + Math . pow(
end middle y , 2) ) ;

ang le = Math . acos ( dotProd / ( l ength1 ∗ l ength2 ) ) ;
ang le = Math . toDegrees ( ang le ) ;

15 i f ( ang le <= max angle ) {
r e l a t i v e l e n g t h = ( length1 + length2 ) / po lygon length ;
i f ( r e l a t i v e l e n g t h >= min length ) {

return true ;
}

20 else return fa l se ;
}
else return fa l se ;

}

Table 2: method isFeaturePoint of class FeaturePointDetector
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needed covariances allows to calculate the entries with the add operations in lines 14
to 16 ( a00, a01 and a11 represent the matrix elements a1,1, a1,2 and a2,2, they are just
named this way to correspond to the array indices of the return value). However also
array usage could be avoided during the calculation of the covariance the return value is
a two dimensional array of type double (line 25), because it becomes more convenient
to use the covariance as an argument for other methods. The method to calculate the

public stat ic double [ ] [ ] covar i ance ( Vector v ) {
double [ ] [ ] matrix = new double [ 2 ] [ 2 ] ;
double count = v . s i z e ( ) ;
double [ ] c en t e r = c a l c u l a t e c e n t e r ( v ) ;

5 double x c = cente r [ 0 ] ;
double y c = cente r [ 1 ] ;
double x , y ;
double a00 = 0 . 0 , a01 = 0 . 0 , a11 = 0 . 0 ;
Point p ;

10 for ( int i =0; i < count ; i++) {
p = ( Point ) v . elementAt ( i ) ;
x = p . getX ( ) − x c ;
y = p . getY ( ) − y c ;
a00 += x∗x ;

15 a01 += x∗y ;
a11 += y∗y ;

}
a00 /= count ;
a01 /= count ;

20 a11 /= count ;

matrix [ 0 ] [ 0 ] = a00 ;
matrix [ 1 ] [ 0 ] = matrix [ 0 ] [ 1 ] = a01 ;
matrix [ 1 ] [ 1 ] = a11 ;

25 return matrix ;
}

Table 3: method Covariance.covariance

eigenvectors, which was adapted from the EISPACK library (6) and “fine-tuned” for
2 × 2 symmetrical matrices with real values is less suited for discussion of source code,
because of its focus on efficiency, but reviewing the original EISPACK source code is
encouraged. The calculation of eigenvectors is done in file hqr2.f.

To determine if a feature point Pi is convex or concave (needed in equation (5)) it is
checked, if Pi is inside the polygon without the vertex Pi. If Pi is inside, the feature point
is concave, otherwise it is convex. An efficient algorithm to check whether a given point
is inside or outside of a two dimensional polygon is to proceed from the point along an
axis (commonly the x-axis) the the boundary of the drawing plane and count how many
time an edge is crossed. An odd number of crossings indicate that the point is inside of
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the polygon, while an even number means that the point lies on the outside. The earliest
presentation of this algorithm can be found in (18), although this early version does not
include special treatment for the cases if the line intersects one or more vertices. A good
overview of the topic can be found in (10).

To determine which eigenvector is the tangent eigenvector and which is the normal
eigenvectors (also needed in equation (5)) the perpendicular bisector at a feature point is
calculated. Calculation of the bisector for a point is depicted in table 4. The parameter

public stat ic double [ ] g e tB i s e c t o r ( Vector v ) {
double [ ] b i s e c t o r = new double [ 2 ] ;
int mid = v . s i z e ( ) / 2 ;
Point l e f t = ( Point )v . elementAt (mid − 1) ;

5 Point r i g h t = ( Point ) v . elementAt (mid + 1) ;
Point c ente r = ( Point ) v . elementAt (mid ) ;

double center x , center y , l e f t x , l e f t y , r i gh t x , r i g h t y ;
c en t e r x = (double ) c en t e r . getX ( ) ;

10 c en t e r y = (double ) c en t e r . getY ( ) ;
l e f t x = (double ) l e f t . getX ( ) ;
l e f t y = (double ) l e f t . getY ( ) ;
r i g h t x = (double ) r i g h t . getX ( ) ;
r i g h t y = (double ) r i g h t . getY ( ) ;

15 double d i s t 1 = Math . sq r t (Math . pow( l e f t x − center x , 2) + Math .
pow( l e f t y − center y , 2) ) ;

double d i s t 2 = Math . sq r t (Math . pow( c en t e r x − r i gh t x , 2) + Math .
pow( c en t e r y − r i gh t y , 2) ) ;

double d i s t r a t i o = d i s t 1 / ( d i s t 1 + d i s t 2 ) ;

double b i s e c x = l e f t x + d i s t r a t i o ∗ ( r i g h t x − l e f t x ) ;
20 double b i s e c y = l e f t y + d i s t r a t i o ∗ ( r i g h t y − l e f t y ) ;

b i s e c x = b i s e c x − c en t e r x ;
b i s e c y = b i s e c y − c en t e r y ;

25 b i s e c t o r [ 0 ] = b i s e c x ;
b i s e c t o r [ 1 ] = b i s e c y ;
return b i s e c t o r ;

}

Table 4: Method Covariance.getBisector

Vector v contains the region of support of the current feature point with the feature
point being the element in the middle of the vector. Points left and right (lines 4 and
5) are points on the edges connecting the feature point with its neighboring vertices. In
lines 15 and 16 the Euclidean distance from left and right to the feature point (stored
in center) are calculated and the ratio of one distance to the total distance is measured.
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To get the bisector a point on the line connecting left and right is needed where the
ratio of the distances has to be the same as to the feature point. This is done in lines
19 and 20. The vector from this point to the feature point is the desired bisector. Once
the bisector is calculated the dot product can be used to determine which eigenvector
is tangent eigenvector and which is normal eigenvector. The eigenvector where the dot
product with the bisector yields 1 is the normal eigenvector and the other one where
the dot product yields 0 is the tangent eigenvector. After these properties have been
determined the further calculation of feature variation, feature side variation and feature
size (equations (5), (6) and (7)) becomes quite simple.

6.2.3 Path creation

This section deals with the creation of a path representing a correspondence between
two polygons using dynamic programming techniques (see 5.4). Recapitulating that all
optimal paths for every possible initial correspondence have to be calculated it is highly
recommended to minimize the computation during each path calculation. Thus it is
sensible to compute the discard and similarity costs (see 5.3.3 and 5.3.4) in advance
once and access the calculated results later multiple times. This is done in method
calculateAllDeltaCosts(Polygon, Polygon, int) depicted in table 5. The para-

public stat ic double [ ] [ ] [ ] [ ] c a l cu l a t eA l lDe l t aCo s t s ( Polygon source
, Polygon target , int s k i p s ) {

int dim1 = source . getFeaturePointCount ( ) ;
int dim2 = ta rg e t . getFeaturePointCount ( ) ;
int source index , t a r g e t i nd ex ;

5 double [ ] [ ] [ ] [ ] d e l t a f i e l d = new double [ dim1 ] [ dim2 ] [ s k i p s +1] [
s k i p s +1] ;

for ( int i = 0 ; i < dim1 ; i++) {
for ( int j = 0 ; j < dim2 ; j++) {

for ( int k = 0 ; k <= sk ip s ; k++) {
sou r c e index = ( i − k + dim1 ) % dim1 ;

10 for ( int l = 0 ; l <= sk ip s ; l++) {
t a r g e t i nd ex = ( j − l + dim2 ) % dim2 ;
d e l t a f i e l d [ i ] [ j ] [ k ] [ l ] = de l taCos t s ( source , target , i ,

source index , j , t a r g e t i nd ex ) ;
}

}
15 }

}
return d e l t a f i e l d ;

}

Table 5: method MorphCalculator.calculateAllDeltaCosts

meter skips specifies how many feature points are allowed to be omitted while deter-
mining the best allowable predecessor for a node in the dynamic programming graph.
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In line 2 and 3 the number of feature points for source and target are set and line 5
reserves the amount of data storage needed for all allowed delta costs given the number
of feature points and the number of skips. The nested for-loops assign the according
delta costs to every data field in the four dimensional double array deltaCosts. Costs
for a correspondences of point PSi of source and PT j of target are stored at positions
deltaCosts[i][j][][].

The associated costs for a correspondence between Si and Tj and assuming as the pre-
vious correspondence Si−k and Tj−l if those points are insides the allowed boundaries are
stored at deltaCosts[i][j][k][l]. Method deltaCosts(Polygon, Polygon, int,

int, int, int), displayed in table 6 calculates just these costs according to equation
(12). Lines 3 and 4 add the costs for discarding the feature points between Si and

public stat ic double de l taCos t s ( Polygon source , Polygon target ,
int s t a r t i n d ex s , int end index s , int s t a r t i n d e x t , int
end index t ) {

double c o s t s = 0 . 0 ;
c o s t s += di sCos t s ( source , s t a r t i n d ex s , end index s ) ;
c o s t s += di sCos t s ( target , s t a r t i n d e x t , end index t ) ;

5 c o s t s += FeaturePoint . ca l cu l a t e S im Cos t ( source . getFeaturePoint (
end index s ) , t a r g e t . getFeaturePoint ( end index t ) ) ;

return c o s t s ;
}

Table 6: method MorphCalculator.deltaCosts

Si−k and between Tj and Tj−l respectively. In line 5 the costs for the correspondence
between Si−k and Tj−l are added. After all costs have been calculated the path finding
process can commence. This is done in method calculatePath(Polygon, Polygon,

int) which is depicted in table 7. In section 5.4.2 the dynamic programming graph is
depicted as an m×n rectangular graph if source has m and target has n feature points.
A complete correspondence is a path starting at node(0, 0) and ending at node(m,n)
which represents the same correspondence as node(0, 0). The graph is represented in
calculatePath with a two dimensional array of Node, allocated in line 8. Since the
dynamic programming graph has to be built for every possible initial correspondence of
feature points of source and target, method initializeField(Node[][], int, int,

Vector, Vector) is able to initialize field with variable values depending on the ini-
tial correspondence so that independent from the initial correspondence always a path
from node(0, 0) to node(m,n) has to be constructed. To illustrate this more clearly,
if the initial correspondence is set to Si corresponds with Tj instead of S0 and T0 in
node(0, 0) the correspondence of Si and Tj will be stored along the associated simi-
larity costs. In node(k, l) the correspondence between S(i+k) (mod n) and T(j+1) (mod m)

is stored, with their similarity costs and the added costs for the optimal path lead-
ing from node(0, 0) to this node. Finding the optimal path to a node is the task of
method setPredecessor(Node[][], int, int, double[][][][], int, int, int).
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This method checks the path costs to every allowable predecessor of a node(i, j) and
picks the node with the least path costs as the optimal predecessor. In node(i, j) these
path costs are stored as well as the delta costs (see equation (12)) to get from the the
optimal predecessor to node(i, j). Storing these path costs in every node is the technique
of memoization, introduced in section 5.4.1.

Allowable nodes for predecessors are restricted, either by the maximal number of skips
or by the boundaries of the rectangular dynamic programming graph. For example if 2
points might be discarded in both, target and source node(1, 4) would have the follow-
ing allowable predecessors: node(1, 3), node(1, 2), node(1, 1), node(0, 3), node(0, 2) and
node(0, 1). Though the number of skips would allow more predecessors, like node(m −
1, 3) this is not allowed because of the boundaries of the dynamic programming graph
since it would not fit to the initial correspondence in node(0, 0). According to this re-
strictions in the dynamic programming graph first of all the first column and the first
row are calculated (table 7 lines 16 to 18 and 19 to 21). After this step the other rows
are calculated from row 1 to row m (lines 22 to 26). Once node(m,n) is set, the dynamic
programming graph is completed and the optimal path is constructed. It is stored in
node(m,n) and since every node knows its optimal predecessor can be tracked back to
node(0, 0). Once this is done, it has to be checked, if the optimal path with the set initial
correspondence has less costs than all other paths with different initial correspondences
calculated so far. This is done in line 28.

This excerpts close the section about source code detail and next section will give an
overview over the capabilities of the GUI and how to experiment with it.
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public stat ic Path ca l cu la t ePath ( Polygon source , Polygon target ,
int s k i p s ) {

double [ ] [ ] [ ] [ ] d e l taCos t s = ca l cu l a t eA l lDe l t aCo s t s ( source ,
target , s k i p s ) ;

int dim1 = source . getFeaturePointCount ( ) ;
int dim2 = ta rg e t . getFeaturePointCount ( ) ;

5 double min path cos t s = Double .MAX VALUE;
Path path = new Path ( ) ;
Node current node ;
Node [ ] [ ] f i e l d = new Node [ dim1+1] [ dim2+1] ;
int i , j ;

10 Vector s ou r c e f p s = source . getFeaturePo ints ( ) ;
Vector t a r g e t f p s = ta rg e t . getFeaturePo ints ( ) ;
for ( int k = 0 ; k < dim1 ; k++) {

for ( int l = 0 ; l < dim2 ; l++) {
f i e l d = i n i t i a l i z e F i e l d ( f i e l d , k , l , s ou r c e fp s , t a r g e t f p s )

;
15 f i e l d [ 0 ] [ 0 ] . setPathCosts ( de l taCos t s [ k ] [ l ] [ 0 ] [ 0 ] ) ;

for ( i = 1 ; i < dim1+1; i++) {
s e tPr ede c e s s o r ( f i e l d , i , 0 , de l taCosts , k , l , s k i p s ) ;

}
for ( i = 1 ; i < dim2+1; i++) {

20 s e tPr ede c e s s o r ( f i e l d , 0 , i , de l taCosts , k , l , s k i p s ) ;
}
for ( i = 1 ; i < dim1+1; i++) {

for ( j = 1 ; j < dim2+1; j++) {
s e tPr ede c e s s o r ( f i e l d , i , j , de l taCosts , k , l , s k i p s ) ;

25 }
}
current node = f i e l d [ dim1 ] [ dim2 ] ;
i f ( current node . getPathCosts ( ) < min path cos t s ) {

min path cos t s = current node . getPathCosts ( ) ;
30 path = new Path ( ) ;

path . add ( current node ) ;
path . s e tCos t s ( current node . getPathCosts ( ) ) ;
while ( current node . ge tPredece s so r ( ) != null ) {

current node = current node . ge tPredece s so r ( ) ;
35 path . add ( current node ) ;

}
}

}
}

40 return path ;

Table 7: method MorphCalculator.calculatePath

Sven Albrecht 54



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

7 Application

This section is supposed to provide a short manual to the application that evolved during
this thesis. The GUI is depicted in Fig. 24. In the following the use and meanings of
the components of the GUI, marked by the red numbers and boxes will be given.

Figure 24: Application

7.1 Source and target drawing pane

Marked by number 1 and 2 are the source and target drawing panes. In these panes
the user can define source and target by mouse commands. To start a new polygon the
mouse pointer has to be moved either inside the pane labeled 1 or labeled 2. Clicking the
left mouse button creates a vertex of a polygon. A preview of the polygon is displayed
in red dashed lines in the drawing pane. To finish a once started polygon it must be
closed. To close a polygon simply move the mouse pointer near the fist created vertex
and press the left mouse button again. If the polygon is successfully closed, the dashed
lines will become solid. Please be aware that in the current state of the application it
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is not possible to delete once created vertices. To abort the creation of a polygon the
mouse pointer has just to be moved outside of the drawing pane. The sliders below the
drawing panes can be used to zoom into the drawing panes and the clear button can be
used to reset the drawing panes. Saving and loading of polygons is also possible, please
refer to section 7.4 for information on this topic.

7.2 Morphing sequence pane

The pane labeled with number 3 is used to display the morphing sequence. Therefore the
it can not be accessed directly by a user, apart from zooming and clearing operations.
The pane will not display anything unless source and target are created either by drawing
(see 7.1) or by loading existing polygons (see 7.4). If source and target are set, the a
morphing sequence will have to be calculated in the animation menu, marked by number
4 (7.3). After this is done, the morphing sequence will finally be displayed.

7.3 Animation menu

The animation menu consists of two buttons, a parameter menu and an additional slider.
The first button, labeled “Calculate Morph”, is enabled after source and target are set
in drawing panes 1 and 2. This button calculates a morphing sequence dependent on
the parameters set in the animation menu and dependent on the choices of the other
parameters (marked by 6 in Fig. 24 and described in 7.5 and the choices made in the
feature point detection menu (marked by 7 in Fig. 24, described in 7.6. After the
calculation is completed the slider and the button labeled “Animate!” will be enabled.
As long as no morphing sequence is calculated, both slider and animation button will stay
disabled. Once a morphing sequence is calculated clicking on the “Animate!” button
will trigger the display of the sequence in the morphing sequence pane (Fig. 24, number
3). The length of the animation will depend on the settings of the parameters in the
animation menu. The user can choose between a fixed number of in-between frames,
which each frame being displayed for about 50 milliseconds, depending on the speed
of the computer running the application. The second option is the set the duration
of the animation to a fixed number of seconds and pick the desired rate of frames per
seconds. Please not that this option is still in an experimental status - depending on
the computational power the morphing sequence will roughly take the time specified in
the text field, but it is far from being really accurate. The slider can be used to display
single in-between steps of the morphing sequence. After the calculation of a morphing
sequence is completed changing the sliders position will display the frame, according to
the value of the slider. The current value of the slider is displayed on its left.

7.4 Load / save menu

The load/save menu (Fig. 24, number 5) allows the user to store polygons drawn in the
source or target panes (Fig. 24, number 1 and 2), to store a complete morphing sequence
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displayed in the morphing sequence pane (Fig. 24, number 3) or to load polygons as
source and target.

7.4.1 Saving options

A morphing sequence can be stored to the SVG file format, while source and target
can be stored either as an SVG file or in the .2dp file format. The extension .2dp

marks that a text file contains information of a polygon. An exemplary polygon in the
.2dp format is displayed in table 8. Lines 1 and 2 work as header information, every
valid polygon in .2dp format has to first include these lines. Line 3 has to be empty
to separate the header from the actual polygon data. In line 4 it is determined if the
polygon is closed or not closed. Another blank separates this information and the data
of all vertices, contained in the polygon. Each following line represents one vertex. A
vertex is described by first its x coordinate, then a comma as a separator and its y
coordinate. The simple format of a .2dp file allows for creation of polygons in common

2D−Polygon for Morphing
l i s t i n g a l l v e r t i c e s as x and y coo rd ina t e s now :

i s c l o s ed
5

37 ,63
289 ,47
301 ,210
169 ,121

10 20 ,206

Table 8: Exemplary Polygon in .2dp format

text editor.
An SVG file representing a complete morphing sequence will contain the source poly-

gon as a <path> element. The animation sequence will be displayed, using the <animate>
element. Hence the morphing sequence will only be displayed correctly if the animate

element is properly supported in the used SVG viewer.
The “Save” buttons for source and target are enabled as soon as a polygon is contained

in the drawing panes (Fig. 24, number 1 and 2), the “Save” button for a morphing
sequence is enabled, after the calculation of a morphing sequence. Clicking the buttons
opens a new dialog to choose the location and name of the file which should be stored.
For a polygon the default file format is .2dp.

7.4.2 Load options

Clicking on one of the “Load” buttons opens a new dialog to choose a .2dp which
shall be loaded. The import of SVG files is not supported at the current state of the
application. Since .2dp files only represent a single polygon and not a morphing sequence
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only contents for the drawing panes of source and target (Fig. 24, number 1 and 2) can
be loaded.

7.5 Parameters

In this menu (Fig.24, number 6) the user has several options to change the different
parameters used in the algorithm to solve the Vertex Correspondence Problem. First of
all, the user can choose between two different methods to create the region of support
for a feature point ROSh(Pi). The different methods are discussed in section 5.3.1. The
first option labeled “Use uniformly sampled edges” samples every edge of the polygon
with a constant number of point (specified below in the field labeled “Sample Points”).
Depending on the size h of ROSh(Pi) the user can choose how many adjacent edges of a
feature point shall be included into the region of support. Parameter h can be set in the
text field labeled “Size of ROS”. The second option for the region of support restricts the
region of support to the parts of the polygon that are between feature point Pi and its
adjacent feature points. In this method the number of points representing an edge has
no influence. The text field labeled “Skips” determines the maximum of feature points
that may be discarded during the creation of a path in the dynamic programming graph
(see section 5.4.2). The last three parameters determine the weights for the three feature
point properties (see 5.3.2) in equations (8) and (9).

7.6 Feature point detection

In this menu the parameters concerning the detection of feature points can be modified.
The first option to choose is, whether there should be a feature point detection at all.
This can be done by the radio buttons labeled “on” and “off” displayed in Fig. 24,
number 7. If the feature detection is turned off, every vertex of a polygon is treated as
a feature point. Please be aware that the number of feature points strongly affects the
amount of computation needed to solve the Vertex Correspondence Problem, employing
the approach, discussed in section 5. If the feature detection is turned on, feature points
will be detected, using the techniques, suggested in 3.2 and 6.2.1. The user can modify
the parameter αmax in the text field labeled “Maximal angle” and change the minimal
size of the local neighborhood of a valid feature point, in respect to the total size of
the polygon in the text field labeled “Minimal length”. As an alternative option for
experiments the user could also choose the feature points with the greatest sharpness.
If this option is all vertices are ordered according to their sharpness. Dependent on the
parameter in text field “Max Feature Points” the first n vertices in this ordering will be
assumed to be feature points.

7.7 Differences in the Applet of the application

The applet of the application misses the load and save menu (see 7.4). It is replaced by
a drop down menu to choose from some predefined polygons. All other components of
the application work the same.
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8 Results

This section will show some exemplary morphing sequences, that were created using the
application, described in section 7. Unlike stated otherwise the weights ωσ, ωτ and ωρfor
the different feature properties (see equation (8) and (9)) are set to 1

3
each. The size

h for ROSh(Pi) was set to 20. If feature point detection was enabled, αmax was set to
130◦and the minimal proportional size of a feature element was set to 0.01.

Figure 25: Morph sequence table to tortoise
Parameters set as described in the beginning of this section, feature detection
was enabled.

Figure 26: Morph sequence unicorns
Parameters set as described in the beginning of this section, feature detection
was enabled.

In Fig. 25 and 26 the number of allowed skips of feature points was set to 2. In both
examples the region of support for a feature point was bounded by its adjacent feature
points.

Figure 27: Morph sequence table to tortoise without feature detection

Turning on the feature detection does not only enhance the algorithm, but can also
lead to better results in the morphing sequence. Please observe Fig. 27. In the depicted
morphing sequence all parameters were set to the same values as in Fig. 25, but the
feature detection was disabled. The resulting morphing sequence is significantly worse
than the sequence displayed in Fig. 25.

Oftentimes the method how to calculate ROSh(Pi) (see section 5.3.1)also affects the
outcome of the algorithm. A priori the author has not been able to determine so far
which calculation method of ROSh(Pi) works best for given source and target. A set
of examples is presented in Fig. 28. While in the first example depicted in Fig. 28
(labeled with a) and b)) the method of uniformly sampled edges, shown in b) delivers a
preferable result, since less vertices are moved and self-intersection could be prevented.
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Figure 28: Influence of ROSh(Pi) on the resulting morphing sequences
Apart from the calculation of ROSh(Pi) all parameters were set to the same
values. The size h of ROSh(Pi) was set to 20. The sequences displayed in
a) and c) use the calculation method, where ROSh(Pi) is bounded by the
adjacent feature points of Pi. In b) and d) each edge is represented by 5
sample points, which means that for each Pi ROSh(Pi) is composed of the
two next edges to the left and to the right.
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In the second example (c) and d)), on the other hand, the region of support bounded by
feature points, displayed in c), delivers a favorable result. Please observe the distortions
on the lower left side in morphing sequence d), although source and target look quite
similar. In c) these distortions could be prevented.

Figure 29: Influence of the maximal number of skips
In all sequences apart from the number of skips the same parameter values
were used. a) allows for 0, b) for 1 and c) for 2 skips in the dynamic
programming graph. Feature point detection was enabled.

The number of allowed skips during the calculation of the dynamic programming graph
can also have a huge influence on the morphing sequence. In Fig. 29 this influence is
shown. All sequences use, apart from the maximal allowed number of skips, the same
parameter values. In a) the number of allowed skips is set to 0. This leads, in the
depicted scenario, to a correspondence which involves large movements in every part of
the polygon and leads, using straight animation paths, to significant self-intersections.
The second sequence b) already avoids self intersections and the chosen correspondences
seem to be more reasonable than in a). The maximum of skips in this sequence was
set to 1. Though b) is undoubtedly better than a) still a lot of distortions happen in
the upper part of the displayed polygon from the left to the right side. In c) most of
these “unnecessary” movement could be avoided, allowing for 2 skips in the dynamic
programming graph. The resulting morphing sequence is preferable to those depicted
in a) and b). However the influence of the number of skips is not always as visible and
beneficial as in the shown example Fig. 29.
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9 Outlook

Though the application described in section 7 allows the user to test the algorithm to
solve the vertex correspondence problem, introduced in section 5, and the influence of
several parameters, it can still be upgraded in some respects.

The introduction of general two dimensional shapes instead of mere polygons would
be a definite improvement, but also require a lot of additional programming work. New
classes to represent general shapes are needed, which are not only efficient in the amount
of storage used, but also the steps of the algorithm must be efficiently applicable. In
many cases of two dimensional shapes not only feature points will have to be handled,
but also weight-points for curves will have to be moved accordingly. Methods that are
capable of processing polygons will have to be altered to cope with the different form of
data, although hopefully the core of the methods will applicable for the extended case
scenario.

In the actual animation one could try to evolve application from simply animation
along straight lines to more sophisticated approaches, like the ones described in (8; 15;
16; 17) for example. However employing these approaches for the vertex path problem
will mean that the export to SVG will also have to be revised completely, since the
<animate> element, used in its current form can only handle straight lines as animation
paths.

The application would also benefit greatly if the user could alter source and target in
their panels by dragging and dropping vertices.

Section 3.2 described one method to detect high curvature point in two dimensional
shapes and the employed altered approach for appliance on polygons. It could be inter-
esting to test other algorithms to detect high curvature points. Not only to compare the
results for feature detection, but mainly to see how the performance of the algorithm
introduced in 5 changes depending on different sets of detected feature points. To a
certain degree this is already possible by changing the parameters for the implemented
feature detector, but other algorithms would broaden the possibilities to experiment.

In respect to the algorithm (5) one could think about some other criteria, which could
be introduced to measure the similarity of the local neighborhood of a feature point. At
the moment no feature property (see 5.3.2) yields information on the physical position
(in terms of x and y coordinates) of a feature point. For instance one could take into
account the location and distance in respect to the center of a shape. Feature points that
are located in the same area in respect to the center of their associated shape would
get less additional similarity costs. If two feature points lie in opposite directions of
the center a cost penalty could be added to discourage a correspondence between such
points. However such an idea must be thoroughly tested, if it will influence the overall
performance of the algorithm in a beneficial way.

An analysis, if techniques, used in other fields of computer science, like pattern match-
ing or object recognition could be applied in the context of solving the correspondence
problem for morphing sequences could also yield interesting insights.

Future work in this area could include, besides extensions to the proposed solution,
a preprocessing of source and target to determine what kind of algorithm might work
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best for these particular polygons to solve the Vertex Correspondence Problem.

Sven Albrecht 63



A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing

10 Conclusions

This thesis offered a brief introduction to the problems involved with polygon morphing
and the approach of Liu et al. (11) was discussed in detail. The appendant application
allows for experimentations with user defined polygons and is able to demonstrate the
influence of the different parameters involved in the algorithm.

The approach proposed in section 5 offers a fast solution to the Vertex Correspondence
Problem, if it is combined with a feature detection as a preprocessing of the polygon.
The feature detection is essential for the efficiency of the algorithm, because it greatly
reduces the amount of computation in many cases.

However the approach does not work well for polygons, which do not have significant
common parts in their appearance. Also regular figures, like a square for example, cause
problems since all feature points have the same feature properties. To handle regular
polygons either new feature properties have to be introduced or other solutions to the
Vertex Correspondence Problem need to be employed. Furthermore the algorithm just
takes local polygonal features into account and a combination with global features might
yield better results.

One of the goals of the approach, to automatize the morphing process, if possible, is not
satisfyingly achieved. Though the user has no direct influence on single correspondences,
the choice of the optimal parameters for a morphing sequence turned out to be strongly
dependent on source and target. This leads to user interaction which would ideally be
not necessary.
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